anonymous8/RPD-Demo
initial commit
4943752
raw
history blame
2.75 kB
import torch
from anonymous_demo.network.sa_encoder import Encoder
from torch import nn
class LSA(nn.Module):
def __init__(self, bert, opt):
super(LSA, self).__init__()
self.opt = opt
self.encoder = Encoder(bert.config, opt)
self.encoder_left = Encoder(bert.config, opt)
self.encoder_right = Encoder(bert.config, opt)
self.linear_window_3h = nn.Linear(opt.embed_dim * 3, opt.embed_dim)
self.linear_window_2h = nn.Linear(opt.embed_dim * 2, opt.embed_dim)
self.eta1 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float))
self.eta2 = nn.Parameter(torch.tensor(self.opt.eta, dtype=torch.float))
def forward(self, global_context_features, spc_mask_vec, lcf_matrix, left_lcf_matrix, right_lcf_matrix):
masked_global_context_features = torch.mul(spc_mask_vec, global_context_features)
# # --------------------------------------------------- #
lcf_features = torch.mul(global_context_features, lcf_matrix)
lcf_features = self.encoder(lcf_features)
# # --------------------------------------------------- #
left_lcf_features = torch.mul(masked_global_context_features, left_lcf_matrix)
left_lcf_features = self.encoder_left(left_lcf_features)
# # --------------------------------------------------- #
right_lcf_features = torch.mul(masked_global_context_features, right_lcf_matrix)
right_lcf_features = self.encoder_right(right_lcf_features)
# # --------------------------------------------------- #
if 'lr' == self.opt.window or 'rl' == self.opt.window:
if self.eta1 <= 0 and self.opt.eta != -1:
torch.nn.init.uniform_(self.eta1)
print('reset eta1 to: {}'.format(self.eta1.item()))
if self.eta2 <= 0 and self.opt.eta != -1:
torch.nn.init.uniform_(self.eta2)
print('reset eta2 to: {}'.format(self.eta2.item()))
if self.opt.eta >= 0:
cat_features = torch.cat((lcf_features, self.eta1 * left_lcf_features, self.eta2 * right_lcf_features),
-1)
else:
cat_features = torch.cat((lcf_features, left_lcf_features, right_lcf_features), -1)
sent_out = self.linear_window_3h(cat_features)
elif 'l' == self.opt.window:
sent_out = self.linear_window_2h(torch.cat((lcf_features, self.eta1 * left_lcf_features), -1))
elif 'r' == self.opt.window:
sent_out = self.linear_window_2h(torch.cat((lcf_features, self.eta2 * right_lcf_features), -1))
else:
raise KeyError('Invalid parameter:', self.opt.window)
return sent_out