File size: 5,094 Bytes
4943752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
"""
LSTM 4 Classification
---------------------------------------------------------------------
"""
import json
import os
import torch
from torch import nn as nn
import textattack
from textattack.model_args import TEXTATTACK_MODELS
from textattack.models.helpers import GloveEmbeddingLayer
from textattack.models.helpers.utils import load_cached_state_dict
from textattack.shared import utils
class LSTMForClassification(nn.Module):
"""A long short-term memory neural network for text classification.
We use different versions of this network to pretrain models for
text classification.
"""
def __init__(
self,
hidden_size=150,
depth=1,
dropout=0.3,
num_labels=2,
max_seq_length=128,
model_path=None,
emb_layer_trainable=True,
):
super().__init__()
self._config = {
"architectures": "LSTMForClassification",
"hidden_size": hidden_size,
"depth": depth,
"dropout": dropout,
"num_labels": num_labels,
"max_seq_length": max_seq_length,
"model_path": model_path,
"emb_layer_trainable": emb_layer_trainable,
}
if depth <= 1:
# Fix error where we ask for non-zero dropout with only 1 layer.
# nn.module.RNN won't add dropout for the last recurrent layer,
# so if that's all we have, this will display a warning.
dropout = 0
self.drop = nn.Dropout(dropout)
self.emb_layer_trainable = emb_layer_trainable
self.emb_layer = GloveEmbeddingLayer(emb_layer_trainable=emb_layer_trainable)
self.word2id = self.emb_layer.word2id
self.encoder = nn.LSTM(
input_size=self.emb_layer.n_d,
hidden_size=hidden_size // 2,
num_layers=depth,
dropout=dropout,
bidirectional=True,
)
d_out = hidden_size
self.out = nn.Linear(d_out, num_labels)
self.tokenizer = textattack.models.tokenizers.GloveTokenizer(
word_id_map=self.word2id,
unk_token_id=self.emb_layer.oovid,
pad_token_id=self.emb_layer.padid,
max_length=max_seq_length,
)
if model_path is not None:
self.load_from_disk(model_path)
self.eval()
def load_from_disk(self, model_path):
# TODO: Consider removing this in the future as well as loading via `model_path` in `__init__`.
import warnings
warnings.warn(
"`load_from_disk` method is deprecated. Please save and load using `save_pretrained` and `from_pretrained` methods.",
DeprecationWarning,
stacklevel=2,
)
self.load_state_dict(load_cached_state_dict(model_path))
self.eval()
def save_pretrained(self, output_path):
if not os.path.exists(output_path):
os.makedirs(output_path)
state_dict = {k: v.cpu() for k, v in self.state_dict().items()}
torch.save(
state_dict,
os.path.join(output_path, "pytorch_model.bin"),
)
with open(os.path.join(output_path, "config.json"), "w") as f:
json.dump(self._config, f)
@classmethod
def from_pretrained(cls, name_or_path):
"""Load trained LSTM model by name or from path.
Args:
name_or_path (:obj:`str`): Name of the model (e.g. "lstm-imdb") or model saved via :meth:`save_pretrained`.
Returns:
:class:`~textattack.models.helpers.LSTMForClassification` model
"""
if name_or_path in TEXTATTACK_MODELS:
# path = utils.download_if_needed(TEXTATTACK_MODELS[name_or_path])
path = utils.download_from_s3(TEXTATTACK_MODELS[name_or_path])
else:
path = name_or_path
config_path = os.path.join(path, "config.json")
if os.path.exists(config_path):
with open(config_path, "r") as f:
config = json.load(f)
else:
# Default config
config = {
"architectures": "LSTMForClassification",
"hidden_size": 150,
"depth": 1,
"dropout": 0.3,
"num_labels": 2,
"max_seq_length": 128,
"model_path": None,
"emb_layer_trainable": True,
}
del config["architectures"]
model = cls(**config)
state_dict = load_cached_state_dict(path)
model.load_state_dict(state_dict)
return model
def forward(self, _input):
# ensure RNN module weights are part of single contiguous chunk of memory
self.encoder.flatten_parameters()
emb = self.emb_layer(_input.t())
emb = self.drop(emb)
output, hidden = self.encoder(emb)
output = torch.max(output, dim=0)[0]
output = self.drop(output)
pred = self.out(output)
return pred
def get_input_embeddings(self):
return self.emb_layer.embedding
|