File size: 10,506 Bytes
4943752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import random
import zipfile
from difflib import Differ

import gradio as gr
import nltk
import pandas as pd
from findfile import find_files

from anonymous_demo import TADCheckpointManager
from textattack import Attacker
from textattack.attack_recipes import BAEGarg2019, PWWSRen2019, TextFoolerJin2019, PSOZang2020, IGAWang2019, GeneticAlgorithmAlzantot2018, DeepWordBugGao2018
from textattack.attack_results import SuccessfulAttackResult
from textattack.datasets import Dataset
from textattack.models.wrappers import HuggingFaceModelWrapper

z = zipfile.ZipFile('checkpoints.zip', 'r')
z.extractall(os.getcwd())

class ModelWrapper(HuggingFaceModelWrapper):
    def __init__(self, model):
        self.model = model  # pipeline = pipeline

    def __call__(self, text_inputs, **kwargs):
        outputs = []
        for text_input in text_inputs:
            raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
            outputs.append(raw_outputs['probs'])
        return outputs


class SentAttacker:

    def __init__(self, model, recipe_class=BAEGarg2019):
        model = model
        model_wrapper = ModelWrapper(model)

        recipe = recipe_class.build(model_wrapper)
        # WordNet defaults to english. Set the default language to French ('fra')

        # recipe.transformation.language = "en"

        _dataset = [('', 0)]
        _dataset = Dataset(_dataset)

        self.attacker = Attacker(recipe, _dataset)


def diff_texts(text1, text2):
    d = Differ()
    return [
        (token[2:], token[0] if token[0] != " " else None)
        for token in d.compare(text1, text2)
    ]


def get_ensembled_tad_results(results):
    target_dict = {}
    for r in results:
        target_dict[r['label']] = target_dict.get(r['label']) + 1 if r['label'] in target_dict else 1

    return dict(zip(target_dict.values(), target_dict.keys()))[max(target_dict.values())]


nltk.download('omw-1.4')

sent_attackers = {}
tad_classifiers = {}

attack_recipes = {
    'bae': BAEGarg2019,
    'pwws': PWWSRen2019,
    'textfooler': TextFoolerJin2019,
    'pso': PSOZang2020,
    'iga': IGAWang2019,
    'GA': GeneticAlgorithmAlzantot2018,
    'wordbugger': DeepWordBugGao2018,
}

for attacker in [
    'pwws',
    'bae',
    'textfooler'
]:
    for dataset in [
        'agnews10k',
        'amazon',
        'sst2',
    ]:
        if 'tad-{}'.format(dataset) not in tad_classifiers:
            tad_classifiers['tad-{}'.format(dataset)] = TADCheckpointManager.get_tad_text_classifier('tad-{}'.format(dataset).upper())

        sent_attackers['tad-{}{}'.format(dataset, attacker)] = SentAttacker(tad_classifiers['tad-{}'.format(dataset)], attack_recipes[attacker])
        tad_classifiers['tad-{}'.format(dataset)].sent_attacker = sent_attackers['tad-{}pwws'.format(dataset)]


def get_a_sst2_example():
    filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']

    dataset_file = {'train': [], 'test': [], 'valid': []}
    dataset = 'sst2'
    search_path = './'
    task = 'text_defense'
    dataset_file['test'] += find_files(search_path, [dataset, 'test', task], exclude_key=['.adv', '.org', '.defense', '.inference', 'train.'] + filter_key_words)

    for dat_type in [
        'test'
    ]:
        data = []
        label_set = set()
        for data_file in dataset_file[dat_type]:

            with open(data_file, mode='r', encoding='utf8') as fin:
                lines = fin.readlines()
                for line in lines:
                    text, label = line.split('$LABEL$')
                    text = text.strip()
                    label = int(label.strip())
                    data.append((text, label))
                    label_set.add(label)
        return data[random.randint(0, len(data))]


def get_a_agnews_example():
    filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']

    dataset_file = {'train': [], 'test': [], 'valid': []}
    dataset = 'agnews'
    search_path = './'
    task = 'text_defense'
    dataset_file['test'] += find_files(search_path, [dataset, 'test', task], exclude_key=['.adv', '.org', '.defense', '.inference', 'train.'] + filter_key_words)
    for dat_type in [
        'test'
    ]:
        data = []
        label_set = set()
        for data_file in dataset_file[dat_type]:

            with open(data_file, mode='r', encoding='utf8') as fin:
                lines = fin.readlines()
                for line in lines:
                    text, label = line.split('$LABEL$')
                    text = text.strip()
                    label = int(label.strip())
                    data.append((text, label))
                    label_set.add(label)
        return data[random.randint(0, len(data))]


def get_a_amazon_example():
    filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']

    dataset_file = {'train': [], 'test': [], 'valid': []}
    dataset = 'amazon'
    search_path = './'
    task = 'text_defense'
    dataset_file['test'] += find_files(search_path, [dataset, 'test', task], exclude_key=['.adv', '.org', '.defense', '.inference', 'train.'] + filter_key_words)

    for dat_type in [
        'test'
    ]:
        data = []
        label_set = set()
        for data_file in dataset_file[dat_type]:

            with open(data_file, mode='r', encoding='utf8') as fin:
                lines = fin.readlines()
                for line in lines:
                    text, label = line.split('$LABEL$')
                    text = text.strip()
                    label = int(label.strip())
                    data.append((text, label))
                    label_set.add(label)
        return data[random.randint(0, len(data))]


def generate_adversarial_example(dataset, attacker, text=None, label=None):
    if not text:
        if 'agnews' in dataset.lower():
            text, label = get_a_agnews_example()
        elif 'sst2' in dataset.lower():
            text, label = get_a_sst2_example()
        elif 'amazon' in dataset.lower():
            text, label = get_a_amazon_example()

    result = None
    attack_result = sent_attackers['tad-{}{}'.format(dataset.lower(), attacker.lower())].attacker.simple_attack(text, int(label))
    if isinstance(attack_result, SuccessfulAttackResult):

        if (attack_result.perturbed_result.output != attack_result.original_result.ground_truth_output) and (attack_result.original_result.output == attack_result.original_result.ground_truth_output):
            # with defense
            result = tad_classifiers['tad-{}'.format(dataset.lower())].infer(
                attack_result.perturbed_result.attacked_text.text + '!ref!{},{},{}'.format(attack_result.original_result.ground_truth_output, 1, attack_result.perturbed_result.output),
                print_result=True,
                defense='pwws',
            )

    if result:
        classification_df = {}
        classification_df['pred_label'] = result['label']
        classification_df['confidence'] = round(result['confidence'], 3)
        classification_df['is_correct'] = result['ref_label_check']
        classification_df['is_repaired'] = result['is_fixed']

        advdetection_df = {}
        if result['is_adv_label'] != '0':
            advdetection_df['is_adversary'] = result['is_adv_label']
            advdetection_df['perturbed_label'] = result['perturbed_label']
            advdetection_df['confidence'] = round(result['is_adv_confidence'], 3)
            # advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
            # advdetection_df['is_correct'] = result['ref_is_adv_check']

    else:
        return generate_adversarial_example(dataset, attacker)

    return (text,
            label,
            attack_result.perturbed_result.attacked_text.text,
            diff_texts(text, attack_result.perturbed_result.attacked_text.text),
            diff_texts(text, result['restored_text']),
            attack_result.perturbed_result.output,
            pd.DataFrame(classification_df, index=[0]),
            pd.DataFrame(advdetection_df, index=[0])
            )


demo = gr.Blocks()

with demo:
    with gr.Row():
        with gr.Column():
            input_dataset = gr.Radio(choices=['SST2', 'AGNews10K', 'Amazon'], value='Amazon', label="Dataset")
            input_attacker = gr.Radio(choices=['BAE', 'PWWS', 'TextFooler'], value='TextFooler', label="Attacker")
            input_sentence = gr.Textbox(placeholder='Randomly choose a example from testing set if this box is blank', label="Sentence")
            input_label = gr.Textbox(placeholder='original label ... ', label="Original Label")

            gr.Markdown("Original Example")

            output_origin_example = gr.Textbox(label="Original Example")
            output_original_label = gr.Textbox(label="Original Label")

            gr.Markdown("Adversarial Example")
            output_adv_example = gr.Textbox(label="Adversarial Example")
            output_adv_label = gr.Textbox(label="Perturbed Label")

            gr.Markdown('This demo is deployed on a CPU device so it may take a long time to execute. Please be patient.')
            button_gen = gr.Button("Click Here to Generate an Adversary and Run Adversary Detection & Repair")

        # Right column (outputs)
        with gr.Column():
            gr.Markdown("Example Difference")
            adv_text_diff = gr.HighlightedText(label="Adversarial Example Difference", combine_adjacent=True)
            restored_text_diff = gr.HighlightedText(label="Restored Example Difference", combine_adjacent=True)

            output_is_adv_df = gr.DataFrame(label="Adversary Prediction")
            output_df = gr.DataFrame(label="Standard Classification Prediction")

    # Bind functions to buttons
    button_gen.click(fn=generate_adversarial_example,
                     inputs=[input_dataset, input_attacker, input_sentence, input_label],
                     outputs=[output_origin_example,
                              output_original_label,
                              output_adv_example,
                              adv_text_diff,
                              restored_text_diff,
                              output_adv_label,
                              output_df,
                              output_is_adv_df])

demo.launch()