""" CLIP tokenizer Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ import gzip import html import os import random import string from functools import lru_cache, partial from typing import Callable, List, Optional, Union import warnings import ftfy import numpy as np import regex as re import torch # https://stackoverflow.com/q/62691279 os.environ["TOKENIZERS_PARALLELISM"] = "false" _nltk_init = False DEFAULT_CONTEXT_LENGTH = 77 # default context length for OpenAI CLIP @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = " ".join(text.split()) text = text.strip() return text def _clean_canonicalize(x): # basic, remove whitespace, remove punctuation, lower case return canonicalize_text(basic_clean(x)) def _clean_lower(x): # basic, remove whitespace, lower case return whitespace_clean(basic_clean(x)).lower() def _clean_whitespace(x): # basic, remove whitespace return whitespace_clean(basic_clean(x)) def get_clean_fn(type: str): if type == 'canonicalize': return _clean_canonicalize elif type == 'lower': return _clean_lower elif type == 'whitespace': return _clean_whitespace else: assert False, f"Invalid clean function ({type})." def canonicalize_text( text, *, keep_punctuation_exact_string=None, trans_punctuation: dict = str.maketrans("", "", string.punctuation), ): """Returns canonicalized `text` (lowercase and punctuation removed). From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 Args: text: string to be canonicalized. keep_punctuation_exact_string: If provided, then this exact string kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). """ text = text.replace("_", " ") if keep_punctuation_exact_string: text = keep_punctuation_exact_string.join( part.translate(trans_punctuation) for part in text.split(keep_punctuation_exact_string) ) else: text = text.translate(trans_punctuation) text = text.lower() text = " ".join(text.split()) return text.strip() class SimpleTokenizer(object): def __init__( self, bpe_path: str = default_bpe(), additional_special_tokens: Optional[List[str]] = None, context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH, clean: str = 'lower', reduction_mask: str = '' ): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'' for v in vocab] for merge in merges: vocab.append(''.join(merge)) special_tokens = ['', ''] if additional_special_tokens: special_tokens += additional_special_tokens vocab.extend(special_tokens) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {t:t for t in special_tokens} special = "|".join(special_tokens) self.pat = re.compile( special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE, ) self.vocab_size = len(self.encoder) self.all_special_ids = [self.encoder[t] for t in special_tokens] self.sot_token_id = self.all_special_ids[0] self.eot_token_id = self.all_special_ids[1] self.context_length = context_length self.clean_fn = get_clean_fn(clean) self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '',) pairs = get_pairs(word) if not pairs: return token+'' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except Exception: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = self.clean_fn(text) for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') return text def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] context_length = context_length or self.context_length assert context_length, 'Please set a valid context length' if self.reduction_fn is not None: # use reduction strategy for tokenize if set, otherwise default to truncation below return self.reduction_fn( texts, context_length=context_length, sot_token_id=self.sot_token_id, eot_token_id=self.eot_token_id, encode_fn=self.encode, ) all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = self.eot_token_id result[i, :len(tokens)] = torch.tensor(tokens) return result _tokenizer = SimpleTokenizer() def decode(output_ids: torch.Tensor): output_ids = output_ids.cpu().numpy() return _tokenizer.decode(output_ids) def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor: return _tokenizer(texts, context_length=context_length) def random_mask_tokenize( texts: Union[str, List[str]], context_length: int, sot_token_id: int, eot_token_id: int, encode_fn: Callable, shuffle: bool = False, ): all_tokens = [encode_fn(text) for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = torch.tensor(tokens) num_tokens = len(tokens) if num_tokens > context_length - 2: # 2 for sot and eot token num_keep = context_length - 2 indices = torch.randperm(len(tokens)) indices = indices[:num_keep] if not shuffle: indices = indices.msort() tokens = tokens[indices] num_tokens = num_keep result[i, 0] = sot_token_id result[i, 1:num_tokens + 1] = tokens result[i, num_tokens + 1] = eot_token_id return result def simple_mask_tokenize( texts: Union[str, List[str]], context_length: int, sot_token_id: int, eot_token_id: int, encode_fn: Callable, ): all_tokens = [encode_fn(text) for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): num_tokens = len(tokens) if num_tokens > context_length - 2: # 2 for sot and eot token num_keep = context_length - 2 start_index = random.randint(0, num_tokens - num_keep) # high is incl tokens = tokens[start_index: start_index + num_keep] tokens = [sot_token_id] + tokens + [eot_token_id] result[i, :len(tokens)] = torch.tensor(tokens) return result def syntax_mask_tokenize( texts: Union[str, List[str]], context_length: int, sot_token_id: int, eot_token_id: int, encode_fn: Callable, ) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s). Apply syntax masking before tokenize. """ import nltk global _nltk_init if not _nltk_init: # run them for the first time nltk.download('punkt') nltk.download('averaged_perceptron_tagger') _nltk_init = True def get_order(x): if x.startswith('NN'): return 1 elif x.startswith('JJ'): return 2 elif x.startswith('VB'): return 3 else: return 4 # syntax masking new_texts = [] for text in texts: list_tokens = nltk.tokenize.word_tokenize(text) pos_tags = nltk.pos_tag(list_tokens) # sample the words by get_order method order_list = [get_order(tag) for _, tag in pos_tags] sorted_ids = np.argsort(np.array(order_list)) sampled_ids = sorted(sorted_ids[:context_length - 2]) # need 2 slots for sot and eot tokens sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) # sample the tokens new_text = '' for token in sampled_tokens: new_text = new_text + str(token) + ' ' new_text = new_text.strip() new_texts.append(new_text) texts = new_texts all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): # still need first truncate because some words produces two tokens if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = eot_token_id result[i, :len(tokens)] = torch.tensor(tokens) return result def get_reduction_mask_fn(type: str): """ Choose strategy for dropping (masking) tokens to achieve target context length""" assert type in ('simple', 'random', 'shuffle', 'syntax') if type == 'simple': return simple_mask_tokenize # randomly select block [start:end] elif type == 'random': return random_mask_tokenize # randomly drop tokens (keep order) elif type == 'shuffle': return partial(random_mask_tokenize, shuffle=True) # randomly drop tokens (shuffle order) elif type == 'syntax': return syntax_mask_tokenize # randomly drop prioritized by syntax class HFTokenizer: """HuggingFace tokenizer wrapper""" def __init__( self, tokenizer_name: str, context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH, clean: str = 'whitespace', strip_sep_token: bool = False, language: Optional[str] = None, **kwargs ): from transformers import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **kwargs) set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None) if callable(set_lang_fn): self.set_lang_fn = set_lang_fn if language is not None: self.set_language(language) self.context_length = context_length self.clean_fn = get_clean_fn(clean) self.strip_sep_token = strip_sep_token def save_pretrained(self, dest): self.tokenizer.save_pretrained(dest) def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] context_length = context_length or self.context_length assert context_length, 'Please set a valid context length in class init or call.' texts = [self.clean_fn(text) for text in texts] input_ids = self.tokenizer.batch_encode_plus( texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True, ).input_ids if self.strip_sep_token: input_ids = torch.where( input_ids == self.tokenizer.sep_token_id, torch.zeros_like(input_ids), input_ids, ) return input_ids def set_language(self, src_lang): if hasattr(self, 'set_lang_fn'): self.set_lang_fn(src_lang) else: warnings.warn('Cannot set language for the tokenizer.') class SigLipTokenizer: """HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs """ VOCAB_FILES = { # english, vocab_size=32_000 "c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model", # used in multilingual models (mT5, PaLI), vocab_size=250_000 "mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model", } def __init__( self, tokenizer_name: str, context_length: Optional[int] = 64, ): from transformers import T5TokenizerFast if tokenizer_name in self.VOCAB_FILES: # FIXME temporary hack? import tempfile import fsspec vocab_file = self.VOCAB_FILES[tokenizer_name] with tempfile.NamedTemporaryFile('wb') as dst: with fsspec.open(vocab_file, 'rb') as src: dst.write(src.read()) self.tokenizer = T5TokenizerFast(dst.name, legacy=False) else: self.tokenizer = T5TokenizerFast(tokenizer_name, legacy=False) self.tokenizer.pad_token_id = 1 self.tokenizer.eos_token_id = 1 self.context_length = context_length def save_pretrained(self, dest): self.tokenizer.save_pretrained(dest) def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] context_length = context_length or self.context_length assert context_length, 'Please set a valid context length in class init or call.' texts = [canonicalize_text(basic_clean(text)) for text in texts] output = self.tokenizer( texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True, ) return output.input_ids