# OpenCLIP This is a fork of OpenCLIP used to fine-tune CLIP models with PinPoint counterfactuals. Refer to the original repository for more details on open_clip. ### Installation ``` pip install open_clip_torch ``` ### Pretrained models For LAION-pretrained models, download and place them in the ./pretrained_models (this can be done with open_clip CLI interface)/ ### Sample single-process running code: To finetune CLIP models on CC3M: ```bash python -m open_clip_train.main \ --save-frequency 1 \ --zeroshot-frequency 1 \ --report-to tensorboard \ --train-data="..path_to_image_list.csv" \ --csv-img-key="Image_ID" \ --csv-caption-key="Caption" \ --val-data="/path/to/validation_data.csv" \ --imagenet-val="/path/to/imagenet/root/val/" \ --warmup 10000 \ --batch-size=128 \ --accum_freq=10 \ --lr=5e-06 \ --wd=0.1 \ --epochs=410 \ --workers=8 \ --pretrained_model="pretrained_models/vit_b16_laion2b.pth" \ --model ViT-B-16 ``` Note: `imagenet-val` is the path to the *validation* set of ImageNet for zero-shot evaluation, not the training set! You can remove this argument if you do not want to perform zero-shot evaluation on ImageNet throughout training. Note that the `val` folder should contain subfolders. If it does not, please use [this script](https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh). Note: the `train_data` should point to a *.csv file that contains the filelist with generated images in the following format: `ÌMAGE_ID IMAGE_CAPTION`, separated by '\t'. You can find the lists for our in-painted data under `./annotations`.