import torch import torch.nn as nn from torch.nn import functional as F try: import torch.distributed.nn from torch import distributed as dist has_distributed = True except ImportError: has_distributed = False try: import horovod.torch as hvd except ImportError: hvd = None def gather_features( image_features, text_features, local_loss=False, gather_with_grad=False, rank=0, world_size=1, use_horovod=False ): assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.' if use_horovod: assert hvd is not None, 'Please install horovod' if gather_with_grad: all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) else: with torch.no_grad(): all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) if not local_loss: # ensure grads for local rank when all_* features don't have a gradient gathered_image_features = list(all_image_features.chunk(world_size, dim=0)) gathered_text_features = list(all_text_features.chunk(world_size, dim=0)) gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) else: # We gather tensors from all gpus if gather_with_grad: all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0) all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0) else: gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] dist.all_gather(gathered_image_features, image_features) dist.all_gather(gathered_text_features, text_features) if not local_loss: # ensure grads for local rank when all_* features don't have a gradient gathered_image_features[rank] = image_features gathered_text_features[rank] = text_features all_image_features = torch.cat(gathered_image_features, dim=0) all_text_features = torch.cat(gathered_text_features, dim=0) return all_image_features, all_text_features class ClipLoss(nn.Module): def __init__( self, local_loss=False, gather_with_grad=False, cache_labels=False, rank=0, world_size=1, use_horovod=False, ): super().__init__() self.local_loss = local_loss self.gather_with_grad = gather_with_grad self.cache_labels = cache_labels self.rank = rank self.world_size = world_size self.use_horovod = use_horovod # cache state self.prev_num_logits = 0 self.labels = {} def get_ground_truth(self, device, num_logits) -> torch.Tensor: # calculated ground-truth and cache if enabled if self.prev_num_logits != num_logits or device not in self.labels: labels = torch.arange(num_logits, device=device, dtype=torch.long) if self.world_size > 1 and self.local_loss: labels = labels + num_logits * self.rank if self.cache_labels: self.labels[device] = labels self.prev_num_logits = num_logits else: labels = self.labels[device] return labels def get_logits(self, image_features, text_features, logit_scale): if self.world_size > 1: all_image_features, all_text_features = gather_features( image_features, text_features, self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) if self.local_loss: logits_per_image = logit_scale * image_features @ all_text_features.T logits_per_text = logit_scale * text_features @ all_image_features.T else: logits_per_image = logit_scale * all_image_features @ all_text_features.T logits_per_text = logits_per_image.T else: logits_per_image = logit_scale * image_features @ text_features.T logits_per_text = logit_scale * text_features @ image_features.T return logits_per_image, logits_per_text def forward(self, image_features, text_features, logit_scale, output_dict=False): device = image_features.device logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale) labels = self.get_ground_truth(device, logits_per_image.shape[0]) total_loss = ( F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels) ) / 2 return {"contrastive_loss": total_loss} if output_dict else total_loss class CoCaLoss(ClipLoss): def __init__( self, caption_loss_weight, clip_loss_weight, pad_id=0, # pad_token for open_clip custom tokenizer local_loss=False, gather_with_grad=False, cache_labels=False, rank=0, world_size=1, use_horovod=False, ): super().__init__( local_loss=local_loss, gather_with_grad=gather_with_grad, cache_labels=cache_labels, rank=rank, world_size=world_size, use_horovod=use_horovod ) self.clip_loss_weight = clip_loss_weight self.caption_loss_weight = caption_loss_weight self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id) def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False): clip_loss = torch.tensor(0) if self.clip_loss_weight: clip_loss = super().forward(image_features, text_features, logit_scale) clip_loss = self.clip_loss_weight * clip_loss caption_loss = self.caption_loss( logits.permute(0, 2, 1), labels, ) caption_loss = caption_loss * self.caption_loss_weight if output_dict: return {"contrastive_loss": clip_loss, "caption_loss": caption_loss} return clip_loss, caption_loss class DistillClipLoss(ClipLoss): def dist_loss(self, teacher_logits, student_logits): return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0) def forward( self, image_features, text_features, logit_scale, dist_image_features, dist_text_features, dist_logit_scale, output_dict=False, ): logits_per_image, logits_per_text = \ self.get_logits(image_features, text_features, logit_scale) dist_logits_per_image, dist_logits_per_text = \ self.get_logits(dist_image_features, dist_text_features, dist_logit_scale) labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0]) contrastive_loss = ( F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels) ) / 2 distill_loss = ( self.dist_loss(dist_logits_per_image, logits_per_image) + self.dist_loss(dist_logits_per_text, logits_per_text) ) / 2 if output_dict: return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss} return contrastive_loss, distill_loss def neighbour_exchange(from_rank, to_rank, tensor, group=None): tensor_recv = torch.zeros_like(tensor) send_op = torch.distributed.P2POp( torch.distributed.isend, tensor, to_rank, group=group, ) recv_op = torch.distributed.P2POp( torch.distributed.irecv, tensor_recv, from_rank, group=group, ) reqs = torch.distributed.batch_isend_irecv([send_op, recv_op]) for req in reqs: req.wait() return tensor_recv def neighbour_exchange_bidir(left_rank, right_rank, tensor_to_left, tensor_to_right, group=None): tensor_from_left = torch.zeros_like(tensor_to_right) tensor_from_right = torch.zeros_like(tensor_to_left) send_op_left = torch.distributed.P2POp( torch.distributed.isend, tensor_to_left, left_rank, group=group, ) send_op_right = torch.distributed.P2POp( torch.distributed.isend, tensor_to_right, right_rank, group=group, ) recv_op_left = torch.distributed.P2POp( torch.distributed.irecv, tensor_from_left, left_rank, group=group, ) recv_op_right = torch.distributed.P2POp( torch.distributed.irecv, tensor_from_right, right_rank, group=group, ) reqs = torch.distributed.batch_isend_irecv([send_op_right, send_op_left, recv_op_right, recv_op_left]) for req in reqs: req.wait() return tensor_from_right, tensor_from_left class NeighbourExchange(torch.autograd.Function): @staticmethod def forward(ctx, from_rank, to_rank, group, tensor): ctx.group = group ctx.from_rank = from_rank ctx.to_rank = to_rank return neighbour_exchange(from_rank, to_rank, tensor, group=group) @staticmethod def backward(ctx, grad_output): return (None, None, None) + (NeighbourExchange.apply(ctx.to_rank, ctx.from_rank, ctx.group, grad_output),) def neighbour_exchange_with_grad(from_rank, to_rank, tensor, group=None): return NeighbourExchange.apply(from_rank, to_rank, group, tensor) class NeighbourExchangeBidir(torch.autograd.Function): @staticmethod def forward(ctx, left_rank, right_rank, group, tensor_to_left, tensor_to_right): ctx.group = group ctx.left_rank = left_rank ctx.right_rank = right_rank return neighbour_exchange_bidir(left_rank, right_rank, tensor_to_left, tensor_to_right, group=group) @staticmethod def backward(ctx, *grad_outputs): return (None, None, None) + \ NeighbourExchangeBidir.apply(ctx.right_rank, ctx.left_rank, ctx.group, *grad_outputs) def neighbour_exchange_bidir_with_grad(left_rank, right_rank, tensor_to_left, tensor_to_right, group=None): return NeighbourExchangeBidir.apply(left_rank, right_rank, group, tensor_to_left, tensor_to_right) class SigLipLoss(nn.Module): """ Sigmoid Loss for Language Image Pre-Training (SigLIP) - https://arxiv.org/abs/2303.15343 @article{zhai2023sigmoid, title={Sigmoid loss for language image pre-training}, author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas}, journal={arXiv preprint arXiv:2303.15343}, year={2023} } """ def __init__( self, cache_labels=False, rank=0, world_size=1, bidir=True, use_horovod=False, ): super().__init__() self.cache_labels = cache_labels self.rank = rank self.world_size = world_size assert not use_horovod # FIXME need to look at hvd ops for ring transfers self.use_horovod = use_horovod self.bidir = bidir # cache state FIXME cache not currently used, worthwhile? self.prev_num_logits = 0 self.labels = {} def get_ground_truth(self, device, dtype, num_logits, negative_only=False) -> torch.Tensor: labels = -torch.ones((num_logits, num_logits), device=device, dtype=dtype) if not negative_only: labels = 2 * torch.eye(num_logits, device=device, dtype=dtype) + labels return labels def get_logits(self, image_features, text_features, logit_scale, logit_bias=None): logits = logit_scale * image_features @ text_features.T if logit_bias is not None: logits += logit_bias return logits def _loss(self, image_features, text_features, logit_scale, logit_bias=None, negative_only=False): logits = self.get_logits(image_features, text_features, logit_scale, logit_bias) labels = self.get_ground_truth( image_features.device, image_features.dtype, image_features.shape[0], negative_only=negative_only, ) loss = -F.logsigmoid(labels * logits).sum() / image_features.shape[0] return loss def forward(self, image_features, text_features, logit_scale, logit_bias, output_dict=False): loss = self._loss(image_features, text_features, logit_scale, logit_bias) if self.world_size > 1: # exchange text features w/ neighbour world_size - 1 times right_rank = (self.rank + 1) % self.world_size left_rank = (self.rank - 1 + self.world_size) % self.world_size if self.bidir: text_features_to_right = text_features_to_left = text_features num_bidir, remainder = divmod(self.world_size - 1, 2) for i in range(num_bidir): text_features_recv = neighbour_exchange_bidir_with_grad( left_rank, right_rank, text_features_to_left, text_features_to_right, ) for f in text_features_recv: loss += self._loss( image_features, f, logit_scale, logit_bias, negative_only=True, ) text_features_to_left, text_features_to_right = text_features_recv if remainder: text_features_recv = neighbour_exchange_with_grad( left_rank, right_rank, text_features_to_right) loss += self._loss( image_features, text_features_recv, logit_scale, logit_bias, negative_only=True, ) else: text_features_to_right = text_features for i in range(self.world_size - 1): text_features_from_left = neighbour_exchange_with_grad( left_rank, right_rank, text_features_to_right) loss += self._loss( image_features, text_features_from_left, logit_scale, logit_bias, negative_only=True, ) text_features_to_right = text_features_from_left return {"contrastive_loss": loss} if output_dict else loss