anonymous-upload-neurips-2025's picture
Upload 221 files
88c922f verified
import json
import logging
import os
import re
from copy import deepcopy
from dataclasses import asdict
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union
import torch
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .convert import convert_state_dict
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
resize_pos_embed, get_cast_dtype, resize_text_pos_embed, set_model_preprocess_cfg
from .coca_model import CoCa
from .loss import ClipLoss, DistillClipLoss, CoCaLoss, SigLipLoss
from .openai import load_openai_model
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
list_pretrained_tags_by_model, download_pretrained_from_hf
from .transform import image_transform_v2, AugmentationCfg, PreprocessCfg, merge_preprocess_dict, merge_preprocess_kwargs
from .tokenizer import HFTokenizer, SimpleTokenizer, DEFAULT_CONTEXT_LENGTH
HF_HUB_PREFIX = 'hf-hub:'
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = ('.json',)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f'*{ext}'))
for cf in config_files:
with open(cf, 'r') as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
_rescan_model_configs() # initial populate of model config registry
def list_models():
""" enumerate available model architectures based on config files """
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
""" add model config path or file and update registry """
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()
def get_model_config(model_name):
if model_name in _MODEL_CONFIGS:
return deepcopy(_MODEL_CONFIGS[model_name])
else:
return None
def _get_hf_config(model_id, cache_dir=None):
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
return config
def get_tokenizer(
model_name: str = '',
context_length: Optional[int] = None,
**kwargs,
):
if model_name.startswith(HF_HUB_PREFIX):
model_name = model_name[len(HF_HUB_PREFIX):]
try:
config = _get_hf_config(model_name)['model_cfg']
except Exception:
tokenizer = HFTokenizer(
model_name,
context_length=context_length or DEFAULT_CONTEXT_LENGTH,
**kwargs,
)
return tokenizer
else:
config = get_model_config(model_name)
assert config is not None, f"No valid model config found for {model_name}."
text_config = config.get('text_cfg', {})
if 'tokenizer_kwargs' in text_config:
tokenizer_kwargs = dict(text_config['tokenizer_kwargs'], **kwargs)
else:
tokenizer_kwargs = kwargs
if context_length is None:
context_length = text_config.get('context_length', DEFAULT_CONTEXT_LENGTH)
if 'hf_tokenizer_name' in text_config:
tokenizer = HFTokenizer(
text_config['hf_tokenizer_name'],
context_length=context_length,
**tokenizer_kwargs,
)
else:
tokenizer = SimpleTokenizer(
context_length=context_length,
**tokenizer_kwargs,
)
return tokenizer
def load_state_dict(checkpoint_path: str, map_location='cpu'):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif isinstance(checkpoint, torch.jit.ScriptModule):
state_dict = checkpoint.state_dict()
for key in ["input_resolution", "context_length", "vocab_size"]:
state_dict.pop(key, None)
else:
state_dict = checkpoint
if next(iter(state_dict.items()))[0].startswith('module'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
return state_dict
def load_checkpoint(
model: Union[CLIP, CustomTextCLIP],
checkpoint_path: str,
strict: bool = True,
):
if Path(checkpoint_path).suffix in ('.npz', '.npy'):
# Separate path loading numpy big_vision (SigLIP) weights
from open_clip.convert import load_big_vision_weights
load_big_vision_weights(model, checkpoint_path)
return {}
state_dict = load_state_dict(checkpoint_path)
# Detect & convert 3rd party state_dicts -> open_clip
state_dict = convert_state_dict(model, state_dict)
# Detect old format and make compatible with new format
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
state_dict = convert_to_custom_text_state_dict(state_dict)
# If loading a non-SigLIP model for SigLIP training. See https://github.com/mlfoundations/open_clip/issues/712
if 'logit_bias' not in state_dict and model.logit_bias is not None:
state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"])
# Certain text transformers no longer expect position_ids after transformers==4.31
position_id_key = 'text.transformer.embeddings.position_ids'
if position_id_key in state_dict and not hasattr(model, position_id_key):
del state_dict[position_id_key]
resize_pos_embed(state_dict, model)
resize_text_pos_embed(state_dict, model)
# Finally, load the massaged state_dict into model
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
return incompatible_keys
def create_model(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_text: bool = False,
force_patch_dropout: Optional[float] = None,
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
force_preprocess_cfg: Optional[Dict[str, Any]] = None,
pretrained_image: bool = False,
pretrained_hf: bool = True,
cache_dir: Optional[str] = None,
output_dict: Optional[bool] = None,
require_pretrained: bool = False,
**model_kwargs,
):
force_preprocess_cfg = force_preprocess_cfg or {}
preprocess_cfg = asdict(PreprocessCfg())
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
if has_hf_hub_prefix:
model_id = model_name[len(HF_HUB_PREFIX):]
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
config = _get_hf_config(model_id, cache_dir)
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, config['preprocess_cfg'])
model_cfg = config['model_cfg']
pretrained_hf = False # override, no need to load original HF text weights
else:
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
checkpoint_path = None
model_cfg = None
if isinstance(device, str):
device = torch.device(device)
if pretrained and pretrained.lower() == 'openai':
logging.info(f'Loading pretrained {model_name} from OpenAI.')
model = load_openai_model(
model_name,
precision=precision,
device=device,
cache_dir=cache_dir,
)
else:
model_cfg = model_cfg or get_model_config(model_name)
if model_cfg is not None:
logging.info(f'Loaded {model_name} model config.')
else:
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
raise RuntimeError(f'Model config for {model_name} not found.')
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
if force_patch_dropout is not None:
# override the default patch dropout value
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout
if force_image_size is not None:
# override model config's image size
model_cfg["vision_cfg"]["image_size"] = force_image_size
is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
if pretrained_image:
if is_timm_model:
# pretrained weight loading for timm models set via vision_cfg
model_cfg['vision_cfg']['timm_model_pretrained'] = True
else:
assert False, 'pretrained image towers currently only supported for timm models'
# cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
cast_dtype = get_cast_dtype(precision)
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
if is_hf_model:
# load pretrained weights for HF text model IFF no CLIP weights being loaded
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf and not pretrained
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model
model_cfg = dict(model_cfg, **model_kwargs) # merge cfg dict w/ kwargs (kwargs overrides cfg)
if custom_text:
if "multimodal_cfg" in model_cfg:
model = CoCa(**model_cfg, cast_dtype=cast_dtype)
else:
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
else:
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
if precision in ("fp16", "bf16"):
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
# manual mixed precision that matches original OpenAI behaviour
if is_timm_model:
# FIXME this is a bit janky, create timm based model in low-precision and
# then cast only LayerNormFp32 instances back to float32 so they don't break.
# Why? The convert_weights_to_lp fn only works with native models.
model.to(device=device, dtype=dtype)
from .transformer import LayerNormFp32
def _convert_ln(m):
if isinstance(m, LayerNormFp32):
m.weight.data = m.weight.data.to(torch.float32)
m.bias.data = m.bias.data.to(torch.float32)
model.apply(_convert_ln)
else:
model.to(device=device)
convert_weights_to_lp(model, dtype=dtype)
elif precision in ("pure_fp16", "pure_bf16"):
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
model.to(device=device, dtype=dtype)
else:
model.to(device=device)
pretrained_loaded = False
if pretrained:
checkpoint_path = ''
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
if pretrained_cfg:
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, pretrained_cfg)
elif os.path.exists(pretrained):
checkpoint_path = pretrained
if checkpoint_path:
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
load_checkpoint(model, checkpoint_path)
else:
error_str = (
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
f' Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
logging.warning(error_str)
raise RuntimeError(error_str)
pretrained_loaded = True
elif has_hf_hub_prefix:
logging.info(f'Loading pretrained {model_name} weights ({checkpoint_path}).')
load_checkpoint(model, checkpoint_path)
pretrained_loaded = True
if require_pretrained and not pretrained_loaded:
# callers of create_model_from_pretrained always expect pretrained weights
raise RuntimeError(
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')
if output_dict and hasattr(model, "output_dict"):
model.output_dict = True
if jit:
model = torch.jit.script(model)
# set image preprocessing configuration in model attributes for convenience
if getattr(model.visual, 'image_size', None) is not None:
# use image_size set on model creation (via config or force_image_size arg)
force_preprocess_cfg['size'] = model.visual.image_size
set_model_preprocess_cfg(model, merge_preprocess_dict(preprocess_cfg, force_preprocess_cfg))
return model
def create_loss(args):
if args.distill:
return DistillClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
)
elif "coca" in args.model.lower():
return CoCaLoss(
caption_loss_weight=args.coca_caption_loss_weight,
clip_loss_weight=args.coca_contrastive_loss_weight,
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
)
elif args.siglip:
assert not args.horovod, "Horovod not currently supported for SigLip"
return SigLipLoss(
rank=args.rank,
world_size=args.world_size,
)
return ClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
)
def create_model_and_transforms(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_text: bool = False,
force_patch_dropout: Optional[float] = None,
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
image_interpolation: Optional[str] = None,
image_resize_mode: Optional[str] = None, # only effective for inference
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
pretrained_image: bool = False,
pretrained_hf: bool = True,
cache_dir: Optional[str] = None,
output_dict: Optional[bool] = None,
**model_kwargs,
):
force_preprocess_cfg = merge_preprocess_kwargs(
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode)
model = create_model(
model_name,
pretrained,
precision=precision,
device=device,
jit=jit,
force_quick_gelu=force_quick_gelu,
force_custom_text=force_custom_text,
force_patch_dropout=force_patch_dropout,
force_image_size=force_image_size,
force_preprocess_cfg=force_preprocess_cfg,
pretrained_image=pretrained_image,
pretrained_hf=pretrained_hf,
cache_dir=cache_dir,
output_dict=output_dict,
**model_kwargs,
)
pp_cfg = PreprocessCfg(**model.visual.preprocess_cfg)
preprocess_train = image_transform_v2(
pp_cfg,
is_train=True,
aug_cfg=aug_cfg,
)
preprocess_val = image_transform_v2(
pp_cfg,
is_train=False,
)
return model, preprocess_train, preprocess_val
def create_model_from_pretrained(
model_name: str,
pretrained: Optional[str] = None,
precision: str = 'fp32',
device: Union[str, torch.device] = 'cpu',
jit: bool = False,
force_quick_gelu: bool = False,
force_custom_text: bool = False,
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
image_mean: Optional[Tuple[float, ...]] = None,
image_std: Optional[Tuple[float, ...]] = None,
image_interpolation: Optional[str] = None,
image_resize_mode: Optional[str] = None, # only effective for inference
return_transform: bool = True,
cache_dir: Optional[str] = None,
**model_kwargs,
):
force_preprocess_cfg = merge_preprocess_kwargs(
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode)
model = create_model(
model_name,
pretrained,
precision=precision,
device=device,
jit=jit,
force_quick_gelu=force_quick_gelu,
force_custom_text=force_custom_text,
force_image_size=force_image_size,
force_preprocess_cfg=force_preprocess_cfg,
cache_dir=cache_dir,
require_pretrained=True,
**model_kwargs,
)
if not return_transform:
return model
preprocess = image_transform_v2(
PreprocessCfg(**model.visual.preprocess_cfg),
is_train=False,
)
return model, preprocess