|
import json |
|
import logging |
|
import os |
|
import re |
|
from copy import deepcopy |
|
from dataclasses import asdict |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD |
|
from .convert import convert_state_dict |
|
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ |
|
resize_pos_embed, get_cast_dtype, resize_text_pos_embed, set_model_preprocess_cfg |
|
from .coca_model import CoCa |
|
from .loss import ClipLoss, DistillClipLoss, CoCaLoss, SigLipLoss |
|
from .openai import load_openai_model |
|
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\ |
|
list_pretrained_tags_by_model, download_pretrained_from_hf |
|
from .transform import image_transform_v2, AugmentationCfg, PreprocessCfg, merge_preprocess_dict, merge_preprocess_kwargs |
|
from .tokenizer import HFTokenizer, SimpleTokenizer, DEFAULT_CONTEXT_LENGTH |
|
|
|
HF_HUB_PREFIX = 'hf-hub:' |
|
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] |
|
_MODEL_CONFIGS = {} |
|
|
|
|
|
def _natural_key(string_): |
|
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] |
|
|
|
|
|
def _rescan_model_configs(): |
|
global _MODEL_CONFIGS |
|
|
|
config_ext = ('.json',) |
|
config_files = [] |
|
for config_path in _MODEL_CONFIG_PATHS: |
|
if config_path.is_file() and config_path.suffix in config_ext: |
|
config_files.append(config_path) |
|
elif config_path.is_dir(): |
|
for ext in config_ext: |
|
config_files.extend(config_path.glob(f'*{ext}')) |
|
|
|
for cf in config_files: |
|
with open(cf, 'r') as f: |
|
model_cfg = json.load(f) |
|
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): |
|
_MODEL_CONFIGS[cf.stem] = model_cfg |
|
|
|
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} |
|
|
|
|
|
_rescan_model_configs() |
|
|
|
|
|
def list_models(): |
|
""" enumerate available model architectures based on config files """ |
|
return list(_MODEL_CONFIGS.keys()) |
|
|
|
|
|
def add_model_config(path): |
|
""" add model config path or file and update registry """ |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
_MODEL_CONFIG_PATHS.append(path) |
|
_rescan_model_configs() |
|
|
|
|
|
def get_model_config(model_name): |
|
if model_name in _MODEL_CONFIGS: |
|
return deepcopy(_MODEL_CONFIGS[model_name]) |
|
else: |
|
return None |
|
|
|
|
|
def _get_hf_config(model_id, cache_dir=None): |
|
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir) |
|
with open(config_path, 'r', encoding='utf-8') as f: |
|
config = json.load(f) |
|
return config |
|
|
|
|
|
def get_tokenizer( |
|
model_name: str = '', |
|
context_length: Optional[int] = None, |
|
**kwargs, |
|
): |
|
if model_name.startswith(HF_HUB_PREFIX): |
|
model_name = model_name[len(HF_HUB_PREFIX):] |
|
try: |
|
config = _get_hf_config(model_name)['model_cfg'] |
|
except Exception: |
|
tokenizer = HFTokenizer( |
|
model_name, |
|
context_length=context_length or DEFAULT_CONTEXT_LENGTH, |
|
**kwargs, |
|
) |
|
return tokenizer |
|
else: |
|
config = get_model_config(model_name) |
|
assert config is not None, f"No valid model config found for {model_name}." |
|
|
|
text_config = config.get('text_cfg', {}) |
|
if 'tokenizer_kwargs' in text_config: |
|
tokenizer_kwargs = dict(text_config['tokenizer_kwargs'], **kwargs) |
|
else: |
|
tokenizer_kwargs = kwargs |
|
|
|
if context_length is None: |
|
context_length = text_config.get('context_length', DEFAULT_CONTEXT_LENGTH) |
|
|
|
if 'hf_tokenizer_name' in text_config: |
|
tokenizer = HFTokenizer( |
|
text_config['hf_tokenizer_name'], |
|
context_length=context_length, |
|
**tokenizer_kwargs, |
|
) |
|
else: |
|
tokenizer = SimpleTokenizer( |
|
context_length=context_length, |
|
**tokenizer_kwargs, |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
def load_state_dict(checkpoint_path: str, map_location='cpu'): |
|
checkpoint = torch.load(checkpoint_path, map_location=map_location) |
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
elif isinstance(checkpoint, torch.jit.ScriptModule): |
|
state_dict = checkpoint.state_dict() |
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
state_dict.pop(key, None) |
|
else: |
|
state_dict = checkpoint |
|
if next(iter(state_dict.items()))[0].startswith('module'): |
|
state_dict = {k[7:]: v for k, v in state_dict.items()} |
|
return state_dict |
|
|
|
|
|
def load_checkpoint( |
|
model: Union[CLIP, CustomTextCLIP], |
|
checkpoint_path: str, |
|
strict: bool = True, |
|
): |
|
if Path(checkpoint_path).suffix in ('.npz', '.npy'): |
|
|
|
from open_clip.convert import load_big_vision_weights |
|
load_big_vision_weights(model, checkpoint_path) |
|
return {} |
|
|
|
state_dict = load_state_dict(checkpoint_path) |
|
|
|
|
|
state_dict = convert_state_dict(model, state_dict) |
|
|
|
|
|
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): |
|
state_dict = convert_to_custom_text_state_dict(state_dict) |
|
|
|
|
|
if 'logit_bias' not in state_dict and model.logit_bias is not None: |
|
state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"]) |
|
|
|
|
|
position_id_key = 'text.transformer.embeddings.position_ids' |
|
if position_id_key in state_dict and not hasattr(model, position_id_key): |
|
del state_dict[position_id_key] |
|
|
|
resize_pos_embed(state_dict, model) |
|
resize_text_pos_embed(state_dict, model) |
|
|
|
|
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict) |
|
return incompatible_keys |
|
|
|
|
|
def create_model( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_text: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, |
|
force_preprocess_cfg: Optional[Dict[str, Any]] = None, |
|
pretrained_image: bool = False, |
|
pretrained_hf: bool = True, |
|
cache_dir: Optional[str] = None, |
|
output_dict: Optional[bool] = None, |
|
require_pretrained: bool = False, |
|
**model_kwargs, |
|
): |
|
force_preprocess_cfg = force_preprocess_cfg or {} |
|
preprocess_cfg = asdict(PreprocessCfg()) |
|
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX) |
|
if has_hf_hub_prefix: |
|
model_id = model_name[len(HF_HUB_PREFIX):] |
|
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir) |
|
config = _get_hf_config(model_id, cache_dir) |
|
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, config['preprocess_cfg']) |
|
model_cfg = config['model_cfg'] |
|
pretrained_hf = False |
|
else: |
|
model_name = model_name.replace('/', '-') |
|
checkpoint_path = None |
|
model_cfg = None |
|
|
|
if isinstance(device, str): |
|
device = torch.device(device) |
|
|
|
if pretrained and pretrained.lower() == 'openai': |
|
logging.info(f'Loading pretrained {model_name} from OpenAI.') |
|
model = load_openai_model( |
|
model_name, |
|
precision=precision, |
|
device=device, |
|
cache_dir=cache_dir, |
|
) |
|
else: |
|
model_cfg = model_cfg or get_model_config(model_name) |
|
if model_cfg is not None: |
|
logging.info(f'Loaded {model_name} model config.') |
|
else: |
|
logging.error(f'Model config for {model_name} not found; available models {list_models()}.') |
|
raise RuntimeError(f'Model config for {model_name} not found.') |
|
|
|
if force_quick_gelu: |
|
|
|
model_cfg["quick_gelu"] = True |
|
|
|
if force_patch_dropout is not None: |
|
|
|
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout |
|
|
|
if force_image_size is not None: |
|
|
|
model_cfg["vision_cfg"]["image_size"] = force_image_size |
|
|
|
is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {}) |
|
if pretrained_image: |
|
if is_timm_model: |
|
|
|
model_cfg['vision_cfg']['timm_model_pretrained'] = True |
|
else: |
|
assert False, 'pretrained image towers currently only supported for timm models' |
|
|
|
|
|
cast_dtype = get_cast_dtype(precision) |
|
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {}) |
|
if is_hf_model: |
|
|
|
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf and not pretrained |
|
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model |
|
|
|
model_cfg = dict(model_cfg, **model_kwargs) |
|
if custom_text: |
|
if "multimodal_cfg" in model_cfg: |
|
model = CoCa(**model_cfg, cast_dtype=cast_dtype) |
|
else: |
|
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype) |
|
else: |
|
model = CLIP(**model_cfg, cast_dtype=cast_dtype) |
|
|
|
if precision in ("fp16", "bf16"): |
|
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16 |
|
|
|
if is_timm_model: |
|
|
|
|
|
|
|
model.to(device=device, dtype=dtype) |
|
from .transformer import LayerNormFp32 |
|
|
|
def _convert_ln(m): |
|
if isinstance(m, LayerNormFp32): |
|
m.weight.data = m.weight.data.to(torch.float32) |
|
m.bias.data = m.bias.data.to(torch.float32) |
|
model.apply(_convert_ln) |
|
else: |
|
model.to(device=device) |
|
convert_weights_to_lp(model, dtype=dtype) |
|
elif precision in ("pure_fp16", "pure_bf16"): |
|
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16 |
|
model.to(device=device, dtype=dtype) |
|
else: |
|
model.to(device=device) |
|
|
|
pretrained_loaded = False |
|
if pretrained: |
|
checkpoint_path = '' |
|
pretrained_cfg = get_pretrained_cfg(model_name, pretrained) |
|
if pretrained_cfg: |
|
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) |
|
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, pretrained_cfg) |
|
elif os.path.exists(pretrained): |
|
checkpoint_path = pretrained |
|
|
|
if checkpoint_path: |
|
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') |
|
load_checkpoint(model, checkpoint_path) |
|
else: |
|
error_str = ( |
|
f'Pretrained weights ({pretrained}) not found for model {model_name}.' |
|
f' Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') |
|
logging.warning(error_str) |
|
raise RuntimeError(error_str) |
|
pretrained_loaded = True |
|
elif has_hf_hub_prefix: |
|
logging.info(f'Loading pretrained {model_name} weights ({checkpoint_path}).') |
|
load_checkpoint(model, checkpoint_path) |
|
pretrained_loaded = True |
|
|
|
if require_pretrained and not pretrained_loaded: |
|
|
|
raise RuntimeError( |
|
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.') |
|
|
|
if output_dict and hasattr(model, "output_dict"): |
|
model.output_dict = True |
|
|
|
if jit: |
|
model = torch.jit.script(model) |
|
|
|
|
|
if getattr(model.visual, 'image_size', None) is not None: |
|
|
|
force_preprocess_cfg['size'] = model.visual.image_size |
|
set_model_preprocess_cfg(model, merge_preprocess_dict(preprocess_cfg, force_preprocess_cfg)) |
|
|
|
return model |
|
|
|
|
|
def create_loss(args): |
|
if args.distill: |
|
return DistillClipLoss( |
|
local_loss=args.local_loss, |
|
gather_with_grad=args.gather_with_grad, |
|
cache_labels=True, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
) |
|
elif "coca" in args.model.lower(): |
|
return CoCaLoss( |
|
caption_loss_weight=args.coca_caption_loss_weight, |
|
clip_loss_weight=args.coca_contrastive_loss_weight, |
|
local_loss=args.local_loss, |
|
gather_with_grad=args.gather_with_grad, |
|
cache_labels=True, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
) |
|
elif args.siglip: |
|
assert not args.horovod, "Horovod not currently supported for SigLip" |
|
return SigLipLoss( |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
) |
|
return ClipLoss( |
|
local_loss=args.local_loss, |
|
gather_with_grad=args.gather_with_grad, |
|
cache_labels=True, |
|
rank=args.rank, |
|
world_size=args.world_size, |
|
use_horovod=args.horovod, |
|
) |
|
|
|
|
|
def create_model_and_transforms( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_text: bool = False, |
|
force_patch_dropout: Optional[float] = None, |
|
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, |
|
image_mean: Optional[Tuple[float, ...]] = None, |
|
image_std: Optional[Tuple[float, ...]] = None, |
|
image_interpolation: Optional[str] = None, |
|
image_resize_mode: Optional[str] = None, |
|
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, |
|
pretrained_image: bool = False, |
|
pretrained_hf: bool = True, |
|
cache_dir: Optional[str] = None, |
|
output_dict: Optional[bool] = None, |
|
**model_kwargs, |
|
): |
|
force_preprocess_cfg = merge_preprocess_kwargs( |
|
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode) |
|
|
|
model = create_model( |
|
model_name, |
|
pretrained, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
force_quick_gelu=force_quick_gelu, |
|
force_custom_text=force_custom_text, |
|
force_patch_dropout=force_patch_dropout, |
|
force_image_size=force_image_size, |
|
force_preprocess_cfg=force_preprocess_cfg, |
|
pretrained_image=pretrained_image, |
|
pretrained_hf=pretrained_hf, |
|
cache_dir=cache_dir, |
|
output_dict=output_dict, |
|
**model_kwargs, |
|
) |
|
|
|
pp_cfg = PreprocessCfg(**model.visual.preprocess_cfg) |
|
|
|
preprocess_train = image_transform_v2( |
|
pp_cfg, |
|
is_train=True, |
|
aug_cfg=aug_cfg, |
|
) |
|
preprocess_val = image_transform_v2( |
|
pp_cfg, |
|
is_train=False, |
|
) |
|
|
|
return model, preprocess_train, preprocess_val |
|
|
|
|
|
def create_model_from_pretrained( |
|
model_name: str, |
|
pretrained: Optional[str] = None, |
|
precision: str = 'fp32', |
|
device: Union[str, torch.device] = 'cpu', |
|
jit: bool = False, |
|
force_quick_gelu: bool = False, |
|
force_custom_text: bool = False, |
|
force_image_size: Optional[Union[int, Tuple[int, int]]] = None, |
|
image_mean: Optional[Tuple[float, ...]] = None, |
|
image_std: Optional[Tuple[float, ...]] = None, |
|
image_interpolation: Optional[str] = None, |
|
image_resize_mode: Optional[str] = None, |
|
return_transform: bool = True, |
|
cache_dir: Optional[str] = None, |
|
**model_kwargs, |
|
): |
|
force_preprocess_cfg = merge_preprocess_kwargs( |
|
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode) |
|
|
|
model = create_model( |
|
model_name, |
|
pretrained, |
|
precision=precision, |
|
device=device, |
|
jit=jit, |
|
force_quick_gelu=force_quick_gelu, |
|
force_custom_text=force_custom_text, |
|
force_image_size=force_image_size, |
|
force_preprocess_cfg=force_preprocess_cfg, |
|
cache_dir=cache_dir, |
|
require_pretrained=True, |
|
**model_kwargs, |
|
) |
|
|
|
if not return_transform: |
|
return model |
|
|
|
preprocess = image_transform_v2( |
|
PreprocessCfg(**model.visual.preprocess_cfg), |
|
is_train=False, |
|
) |
|
|
|
return model, preprocess |
|
|