|
|
|
import os |
|
|
|
import torch |
|
from transformers import AutoTokenizer, CLIPTextModel |
|
from vqgan import VQModel |
|
|
|
from diffusers import ( |
|
DDPMWuerstchenScheduler, |
|
WuerstchenCombinedPipeline, |
|
WuerstchenDecoderPipeline, |
|
WuerstchenPriorPipeline, |
|
) |
|
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt, WuerstchenPrior |
|
|
|
|
|
model_path = "models/" |
|
device = "cpu" |
|
|
|
paella_vqmodel = VQModel() |
|
state_dict = torch.load(os.path.join(model_path, "vqgan_f4_v1_500k.pt"), map_location=device)["state_dict"] |
|
paella_vqmodel.load_state_dict(state_dict) |
|
|
|
state_dict["vquantizer.embedding.weight"] = state_dict["vquantizer.codebook.weight"] |
|
state_dict.pop("vquantizer.codebook.weight") |
|
vqmodel = PaellaVQModel(num_vq_embeddings=paella_vqmodel.codebook_size, latent_channels=paella_vqmodel.c_latent) |
|
vqmodel.load_state_dict(state_dict) |
|
|
|
|
|
text_encoder = CLIPTextModel.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") |
|
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") |
|
|
|
|
|
gen_text_encoder = CLIPTextModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K").to("cpu") |
|
gen_tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") |
|
|
|
orig_state_dict = torch.load(os.path.join(model_path, "model_v2_stage_b.pt"), map_location=device)["state_dict"] |
|
state_dict = {} |
|
for key in orig_state_dict.keys(): |
|
if key.endswith("in_proj_weight"): |
|
weights = orig_state_dict[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] |
|
elif key.endswith("in_proj_bias"): |
|
weights = orig_state_dict[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] |
|
elif key.endswith("out_proj.weight"): |
|
weights = orig_state_dict[key] |
|
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights |
|
elif key.endswith("out_proj.bias"): |
|
weights = orig_state_dict[key] |
|
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights |
|
else: |
|
state_dict[key] = orig_state_dict[key] |
|
deocder = WuerstchenDiffNeXt() |
|
deocder.load_state_dict(state_dict) |
|
|
|
|
|
orig_state_dict = torch.load(os.path.join(model_path, "model_v3_stage_c.pt"), map_location=device)["ema_state_dict"] |
|
state_dict = {} |
|
for key in orig_state_dict.keys(): |
|
if key.endswith("in_proj_weight"): |
|
weights = orig_state_dict[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] |
|
elif key.endswith("in_proj_bias"): |
|
weights = orig_state_dict[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] |
|
elif key.endswith("out_proj.weight"): |
|
weights = orig_state_dict[key] |
|
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights |
|
elif key.endswith("out_proj.bias"): |
|
weights = orig_state_dict[key] |
|
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights |
|
else: |
|
state_dict[key] = orig_state_dict[key] |
|
prior_model = WuerstchenPrior(c_in=16, c=1536, c_cond=1280, c_r=64, depth=32, nhead=24).to(device) |
|
prior_model.load_state_dict(state_dict) |
|
|
|
|
|
scheduler = DDPMWuerstchenScheduler() |
|
|
|
|
|
prior_pipeline = WuerstchenPriorPipeline( |
|
prior=prior_model, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler |
|
) |
|
|
|
prior_pipeline.save_pretrained("warp-ai/wuerstchen-prior") |
|
|
|
decoder_pipeline = WuerstchenDecoderPipeline( |
|
text_encoder=gen_text_encoder, tokenizer=gen_tokenizer, vqgan=vqmodel, decoder=deocder, scheduler=scheduler |
|
) |
|
decoder_pipeline.save_pretrained("warp-ai/wuerstchen") |
|
|
|
|
|
wuerstchen_pipeline = WuerstchenCombinedPipeline( |
|
|
|
text_encoder=gen_text_encoder, |
|
tokenizer=gen_tokenizer, |
|
decoder=deocder, |
|
scheduler=scheduler, |
|
vqgan=vqmodel, |
|
|
|
prior_tokenizer=tokenizer, |
|
prior_text_encoder=text_encoder, |
|
prior=prior_model, |
|
prior_scheduler=scheduler, |
|
) |
|
wuerstchen_pipeline.save_pretrained("warp-ai/WuerstchenCombinedPipeline") |
|
|