File size: 9,324 Bytes
88c922f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import argparse
import torch
import open_clip
import pandas as pd
from torch.utils.flop_counter import FlopCounterMode
try:
import fvcore
except:
fvcore = None
parser = argparse.ArgumentParser(description='OpenCLIP Profiler')
# benchmark specific args
parser.add_argument('--model', metavar='NAME', default='',
help='model(s) to profile')
parser.add_argument('--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for results')
parser.add_argument('--profiler', default='torch', type=str, choices=['torch', 'fvcore'])
parser.add_argument('--batch-size', default=1, type=int, help='Batch size for profiling')
def profile_fvcore(
model,
image_input_size=(3, 224, 224),
text_input_size=(77,),
batch_size=1,
detailed=False,
force_cpu=False
):
if force_cpu:
model = model.to('cpu')
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
example_image_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype)
example_text_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64)
fca = fvcore.nn.FlopCountAnalysis(model, (example_image_input, example_text_input))
aca = fvcore.nn.ActivationCountAnalysis(model, (example_image_input, example_text_input))
if detailed:
fcs = fvcore.nn.flop_count_str(fca)
print(fcs)
return fca.total() / batch_size, aca.total() / batch_size
def profile_fvcore_text(
model,
text_input_size=(77,),
batch_size=1,
detailed=False,
force_cpu=False
):
if force_cpu:
model = model.to('cpu')
device = next(model.parameters()).device
example_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64)
fca = fvcore.nn.FlopCountAnalysis(model, example_input)
aca = fvcore.nn.ActivationCountAnalysis(model, example_input)
if detailed:
fcs = fvcore.nn.flop_count_str(fca)
print(fcs)
return fca.total() / batch_size, aca.total() / batch_size
def profile_fvcore_image(
model,
image_input_size=(3, 224, 224),
batch_size=1,
detailed=False,
force_cpu=False
):
if force_cpu:
model = model.to('cpu')
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
example_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype)
fca = fvcore.nn.FlopCountAnalysis(model, example_input)
aca = fvcore.nn.ActivationCountAnalysis(model, example_input)
if detailed:
fcs = fvcore.nn.flop_count_str(fca)
print(fcs)
return fca.total() / batch_size, aca.total() / batch_size
def profile_torch_image(model, image_input_size, batch_size=1, force_cpu=False):
"""Profile the image encoder using torch.utils.flop_counter"""
if force_cpu:
model = model.to('cpu')
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
example_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype)
flop_counter = FlopCounterMode()
with flop_counter:
model(example_input)
total_flops = sum(flop_counter.get_flop_counts()['Global'].values())
return total_flops / batch_size
def profile_torch_text(model, text_input_size, batch_size=1, force_cpu=False):
"""Profile the text encoder using torch.utils.flop_counter"""
if force_cpu:
model = model.to('cpu')
device = next(model.parameters()).device
example_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64)
flop_counter = FlopCounterMode()
with flop_counter:
model(example_input)
total_flops = sum(flop_counter.get_flop_counts()['Global'].values())
return total_flops / batch_size
def profile_torch(model, text_input_size, image_input_size, batch_size=1, force_cpu=False):
"""Profile the full model using torch.utils.flop_counter"""
if force_cpu:
model = model.to('cpu')
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype
image_input = torch.ones((batch_size,) + image_input_size, device=device, dtype=dtype)
text_input = torch.ones((batch_size,) + text_input_size, device=device, dtype=torch.int64)
flop_counter = FlopCounterMode()
with flop_counter:
model(image_input, text_input)
total_flops = sum(flop_counter.get_flop_counts()['Global'].values())
return total_flops / batch_size
def count_params(model):
return sum(m.numel() for m in model.parameters())
def profile_model(model_name, batch_size=1, profiler='torch'):
assert profiler in ['torch', 'fvcore'], 'Only torch and fvcore profilers are supported'
if profiler == 'fvcore':
assert fvcore is not None, 'Please install fvcore.'
model = open_clip.create_model(model_name, force_custom_text=True, pretrained_hf=False)
model.eval()
if torch.cuda.is_available():
model = model.cuda()
if isinstance(model.visual.image_size, (tuple, list)):
image_input_size = (3,) + tuple(model.visual.image_size[-2:])
else:
image_input_size = (3, model.visual.image_size, model.visual.image_size)
text_input_size = (77,)
if hasattr(model, 'context_length') and model.context_length:
text_input_size = (model.context_length,)
results = {}
results['model'] = model_name
results['image_size'] = image_input_size[1]
model_cfg = open_clip.get_model_config(model_name)
if model_cfg:
vision_cfg = open_clip.CLIPVisionCfg(**model_cfg['vision_cfg'])
text_cfg = open_clip.CLIPTextCfg(**model_cfg['text_cfg'])
results['image_width'] = int(vision_cfg.width)
results['text_width'] = int(text_cfg.width)
results['embed_dim'] = int(model_cfg['embed_dim'])
else:
results['image_width'] = 0
results['text_width'] = 0
results['embed_dim'] = 0
retries = 2
while retries:
retries -= 1
try:
results['mparams'] = round(count_params(model) / 1e6, 2)
results['image_mparams'] = round(count_params(model.visual) / 1e6, 2)
results['text_mparams'] = round(count_params(model.text) / 1e6, 2)
if profiler == 'fvcore':
macs, acts = profile_fvcore(
model, image_input_size=image_input_size, text_input_size=text_input_size, force_cpu=not retries, batch_size=batch_size)
image_macs, image_acts = profile_fvcore_image(
model.visual, image_input_size=image_input_size, force_cpu=not retries, batch_size=batch_size)
text_macs, text_acts = profile_fvcore_text(
model.text, text_input_size=text_input_size, force_cpu=not retries, batch_size=batch_size)
results['gmacs'] = round(macs / 1e9, 2)
results['macts'] = round(acts / 1e6, 2)
results['image_gmacs'] = round(image_macs / 1e9, 2)
results['image_macts'] = round(image_acts / 1e6, 2)
results['text_gmacs'] = round(text_macs / 1e9, 2)
results['text_macts'] = round(text_acts / 1e6, 2)
elif profiler == 'torch':
image_flops = profile_torch_image(
model.visual, image_input_size=image_input_size, force_cpu=not retries, batch_size=batch_size)
text_flops = profile_torch_text(
model.text, text_input_size=text_input_size, force_cpu=not retries, batch_size=batch_size)
total_flops = profile_torch(
model, image_input_size=image_input_size, text_input_size=text_input_size, force_cpu=not retries, batch_size=batch_size)
results['gflops'] = round(total_flops / 1e9, 2)
results['image_gflops'] = round(image_flops / 1e9, 2)
results['text_gflops'] = round(text_flops / 1e9, 2)
except RuntimeError as e:
pass
return results
def main():
args = parser.parse_args()
# FIXME accept a text file name to allow lists of models in txt/csv
if args.model == 'all':
parsed_model = open_clip.list_models()
else:
parsed_model = args.model.split(',')
results = []
models_with_errors = []
for m in parsed_model:
print('='*100)
print(f'Profiling {m}')
try:
row = profile_model(m, batch_size=args.batch_size, profiler=args.profiler)
results.append(row)
except Exception as e:
print(f'Error profiling {m}: {e}')
import traceback
traceback.print_exc()
models_with_errors.append(m)
df = pd.DataFrame(results, columns=results[0].keys())
if 'gmacs' in df.columns:
df = df.sort_values(by=['gmacs', 'mparams', 'model'])
else:
df = df.sort_values(by=['gflops', 'mparams', 'model'])
print('='*100)
print('Done.')
print(df)
if args.results_file:
df.to_csv(args.results_file, index=False)
if models_with_errors:
print('Models with errors:', models_with_errors)
if __name__ == '__main__':
main()
|