File size: 5,144 Bytes
88c922f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
## 2.24.0

* Fix missing space in error message
* use model flag for normalizing embeddings
* init logit_bias for non siglip pretrained models
* Fix logit_bias load_checkpoint addition 
* Make CoCa model match CLIP models for logit scale/bias init
* Fix missing return of "logit_bias" in CoCa.forward
* Add NLLB-CLIP with SigLIP models
* Add get_logits method and NLLB tokenizer
* Remove the empty file src/open_clip/generation_utils.py
* Update params.py: "BatchNorm" -> "LayerNorm" in the description string for "--lock-text-freeze-layer-norm"

## 2.23.0

* Add CLIPA-v2 models
* Add SigLIP models
* Add MetaCLIP models
* Add NLLB-CLIP models
* CLIPA train code
* Minor changes/fixes
    * Remove protobuf version limit
    * Stop checking model name when loading CoCa models
    * Log native wandb step
    * Use bool instead of long masks

## 2.21.0

* Add SigLIP loss + training support
* Add more DataComp models (B/16, B/32 and B/32@256)
* Update default num workers
* Update CoCa generation for `transformers>=4.31`
* PyTorch 2.0 `state_dict()` compatibility fix for compiled models
* Fix padding in `ResizeMaxSize`
* Convert JIT model on state dict load for `pretrained='filename…'`
* Other minor changes and fixes (typos, README, dependencies, CI)

## 2.20.0

* Add EVA models
* Support serial worker training
* Fix Python 3.7 compatibility 

## 2.19.0

* Add DataComp models

## 2.18.0

* Enable int8 inference without `.weight` attribute

## 2.17.2

* Update push_to_hf_hub

## 2.17.0

* Add int8 support
* Update notebook demo
* Refactor zero-shot classification code

## 2.16.2

* Fixes for context_length and vocab_size attributes 

## 2.16.1

* Fixes for context_length and vocab_size attributes 
* Fix --train-num-samples logic
* Add HF BERT configs for PubMed CLIP model

## 2.16.0

* Add improved g-14 weights
* Update protobuf version

## 2.15.0

* Add convnext_xxlarge weights
* Fixed import in readme
* Add samples per second per gpu logging
* Fix slurm example

## 2.14.0

* Move dataset mixtures logic to shard level
* Fix CoCa accum-grad training
* Safer transformers import guard
* get_labels refactoring

## 2.13.0

* Add support for dataset mixtures with different sampling weights
* Make transformers optional again 

## 2.12.0

* Updated convnext configs for consistency
* Added input_patchnorm option
* Clean and improve CoCa generation
* Support model distillation
* Add ConvNeXt-Large 320x320 fine-tune weights

## 2.11.1

* Make transformers optional
* Add MSCOCO CoCa finetunes to pretrained models

## 2.11.0

* coca support and weights
* ConvNeXt-Large weights

## 2.10.1

* `hf-hub:org/model_id` support for loading models w/ config and weights in Hugging Face Hub

## 2.10.0

* Added a ViT-bigG-14 model.
* Added an up-to-date example slurm script for large training jobs.
* Added a option to sync logs and checkpoints to S3 during training.
* New options for LR schedulers, constant and constant with cooldown
* Fix wandb autoresuming when resume is not set
* ConvNeXt `base` & `base_w` pretrained models added
* `timm-` model prefix removed from configs
* `timm` augmentation + regularization (dropout / drop-path) supported

## 2.9.3

* Fix wandb collapsing multiple parallel runs into a single one

## 2.9.2

* Fix braceexpand memory explosion for complex webdataset urls

## 2.9.1

* Fix release

## 2.9.0

* Add training feature to auto-resume from the latest checkpoint on restart via `--resume latest`
* Allow webp in webdataset
* Fix logging for number of samples when using gradient accumulation
* Add model configs for convnext xxlarge

## 2.8.2

* wrapped patchdropout in a torch.nn.Module

## 2.8.1

* relax protobuf dependency
* override the default patch dropout value in 'vision_cfg'

## 2.8.0

* better support for HF models
* add support for gradient accumulation
* CI fixes
* add support for patch dropout
* add convnext configs


## 2.7.0

* add multilingual H/14 xlm roberta large

## 2.6.1

* fix setup.py _read_reqs

## 2.6.0

* Make openclip training usable from pypi.
* Add xlm roberta large vit h 14 config.

## 2.5.0

* pretrained B/32 xlm roberta base: first multilingual clip trained on laion5B
* pretrained B/32 roberta base: first clip trained using an HF text encoder

## 2.4.1

* Add missing hf_tokenizer_name in CLIPTextCfg.

## 2.4.0

* Fix #211, missing RN50x64 config. Fix type of dropout param for ResNet models
* Bring back LayerNorm impl that casts to input for non bf16/fp16 
* zero_shot.py: set correct tokenizer based on args
* training/params.py: remove hf params and get them from model config

## 2.3.1

* Implement grad checkpointing for hf model.
* custom_text: True if hf_model_name is set
* Disable hf tokenizer parallelism 

## 2.3.0

* Generalizable Text Transformer with HuggingFace Models (@iejMac)

## 2.2.0

* Support for custom text tower
* Add checksum verification for pretrained model weights 

## 2.1.0

* lot including sota models, bfloat16 option, better loading, better metrics

## 1.2.0

* ViT-B/32 trained on Laion2B-en
* add missing openai RN50x64 model

## 1.1.1

* ViT-B/16+
* Add grad checkpointing support
* more robust data loader