File size: 5,144 Bytes
88c922f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
## 2.24.0
* Fix missing space in error message
* use model flag for normalizing embeddings
* init logit_bias for non siglip pretrained models
* Fix logit_bias load_checkpoint addition
* Make CoCa model match CLIP models for logit scale/bias init
* Fix missing return of "logit_bias" in CoCa.forward
* Add NLLB-CLIP with SigLIP models
* Add get_logits method and NLLB tokenizer
* Remove the empty file src/open_clip/generation_utils.py
* Update params.py: "BatchNorm" -> "LayerNorm" in the description string for "--lock-text-freeze-layer-norm"
## 2.23.0
* Add CLIPA-v2 models
* Add SigLIP models
* Add MetaCLIP models
* Add NLLB-CLIP models
* CLIPA train code
* Minor changes/fixes
* Remove protobuf version limit
* Stop checking model name when loading CoCa models
* Log native wandb step
* Use bool instead of long masks
## 2.21.0
* Add SigLIP loss + training support
* Add more DataComp models (B/16, B/32 and B/32@256)
* Update default num workers
* Update CoCa generation for `transformers>=4.31`
* PyTorch 2.0 `state_dict()` compatibility fix for compiled models
* Fix padding in `ResizeMaxSize`
* Convert JIT model on state dict load for `pretrained='filename…'`
* Other minor changes and fixes (typos, README, dependencies, CI)
## 2.20.0
* Add EVA models
* Support serial worker training
* Fix Python 3.7 compatibility
## 2.19.0
* Add DataComp models
## 2.18.0
* Enable int8 inference without `.weight` attribute
## 2.17.2
* Update push_to_hf_hub
## 2.17.0
* Add int8 support
* Update notebook demo
* Refactor zero-shot classification code
## 2.16.2
* Fixes for context_length and vocab_size attributes
## 2.16.1
* Fixes for context_length and vocab_size attributes
* Fix --train-num-samples logic
* Add HF BERT configs for PubMed CLIP model
## 2.16.0
* Add improved g-14 weights
* Update protobuf version
## 2.15.0
* Add convnext_xxlarge weights
* Fixed import in readme
* Add samples per second per gpu logging
* Fix slurm example
## 2.14.0
* Move dataset mixtures logic to shard level
* Fix CoCa accum-grad training
* Safer transformers import guard
* get_labels refactoring
## 2.13.0
* Add support for dataset mixtures with different sampling weights
* Make transformers optional again
## 2.12.0
* Updated convnext configs for consistency
* Added input_patchnorm option
* Clean and improve CoCa generation
* Support model distillation
* Add ConvNeXt-Large 320x320 fine-tune weights
## 2.11.1
* Make transformers optional
* Add MSCOCO CoCa finetunes to pretrained models
## 2.11.0
* coca support and weights
* ConvNeXt-Large weights
## 2.10.1
* `hf-hub:org/model_id` support for loading models w/ config and weights in Hugging Face Hub
## 2.10.0
* Added a ViT-bigG-14 model.
* Added an up-to-date example slurm script for large training jobs.
* Added a option to sync logs and checkpoints to S3 during training.
* New options for LR schedulers, constant and constant with cooldown
* Fix wandb autoresuming when resume is not set
* ConvNeXt `base` & `base_w` pretrained models added
* `timm-` model prefix removed from configs
* `timm` augmentation + regularization (dropout / drop-path) supported
## 2.9.3
* Fix wandb collapsing multiple parallel runs into a single one
## 2.9.2
* Fix braceexpand memory explosion for complex webdataset urls
## 2.9.1
* Fix release
## 2.9.0
* Add training feature to auto-resume from the latest checkpoint on restart via `--resume latest`
* Allow webp in webdataset
* Fix logging for number of samples when using gradient accumulation
* Add model configs for convnext xxlarge
## 2.8.2
* wrapped patchdropout in a torch.nn.Module
## 2.8.1
* relax protobuf dependency
* override the default patch dropout value in 'vision_cfg'
## 2.8.0
* better support for HF models
* add support for gradient accumulation
* CI fixes
* add support for patch dropout
* add convnext configs
## 2.7.0
* add multilingual H/14 xlm roberta large
## 2.6.1
* fix setup.py _read_reqs
## 2.6.0
* Make openclip training usable from pypi.
* Add xlm roberta large vit h 14 config.
## 2.5.0
* pretrained B/32 xlm roberta base: first multilingual clip trained on laion5B
* pretrained B/32 roberta base: first clip trained using an HF text encoder
## 2.4.1
* Add missing hf_tokenizer_name in CLIPTextCfg.
## 2.4.0
* Fix #211, missing RN50x64 config. Fix type of dropout param for ResNet models
* Bring back LayerNorm impl that casts to input for non bf16/fp16
* zero_shot.py: set correct tokenizer based on args
* training/params.py: remove hf params and get them from model config
## 2.3.1
* Implement grad checkpointing for hf model.
* custom_text: True if hf_model_name is set
* Disable hf tokenizer parallelism
## 2.3.0
* Generalizable Text Transformer with HuggingFace Models (@iejMac)
## 2.2.0
* Support for custom text tower
* Add checksum verification for pretrained model weights
## 2.1.0
* lot including sota models, bfloat16 option, better loading, better metrics
## 1.2.0
* ViT-B/32 trained on Laion2B-en
* add missing openai RN50x64 model
## 1.1.1
* ViT-B/16+
* Add grad checkpointing support
* more robust data loader
|