File size: 8,715 Bytes
8c9048a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Run this script to convert the Stable Cascade model weights to a diffusers pipeline.
import argparse

import accelerate
import torch
from safetensors.torch import load_file
from transformers import (
    AutoTokenizer,
    CLIPConfig,
    CLIPImageProcessor,
    CLIPTextModelWithProjection,
    CLIPVisionModelWithProjection,
)

from diffusers import (
    DDPMWuerstchenScheduler,
    StableCascadeCombinedPipeline,
    StableCascadeDecoderPipeline,
    StableCascadePriorPipeline,
)
from diffusers.models import StableCascadeUNet
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.pipelines.wuerstchen import PaellaVQModel


parser = argparse.ArgumentParser(description="Convert Stable Cascade model weights to a diffusers pipeline")
parser.add_argument("--model_path", type=str, default="../StableCascade", help="Location of Stable Cascade weights")
parser.add_argument("--stage_c_name", type=str, default="stage_c.safetensors", help="Name of stage c checkpoint file")
parser.add_argument("--stage_b_name", type=str, default="stage_b.safetensors", help="Name of stage b checkpoint file")
parser.add_argument("--use_safetensors", action="store_true", help="Use SafeTensors for conversion")
parser.add_argument("--save_org", type=str, default="diffusers", help="Hub organization to save the pipelines to")
parser.add_argument("--push_to_hub", action="store_true", help="Push to hub")

args = parser.parse_args()
model_path = args.model_path

device = "cpu"

# set paths to model weights
prior_checkpoint_path = f"{model_path}/{args.stage_c_name}"
decoder_checkpoint_path = f"{model_path}/{args.stage_b_name}"

# Clip Text encoder and tokenizer
config = CLIPConfig.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
config.text_config.projection_dim = config.projection_dim
text_encoder = CLIPTextModelWithProjection.from_pretrained(
    "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", config=config.text_config
)
tokenizer = AutoTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")

# image processor
feature_extractor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")

# Prior
if args.use_safetensors:
    orig_state_dict = load_file(prior_checkpoint_path, device=device)
else:
    orig_state_dict = torch.load(prior_checkpoint_path, map_location=device)

state_dict = {}
for key in orig_state_dict.keys():
    if key.endswith("in_proj_weight"):
        weights = orig_state_dict[key].chunk(3, 0)
        state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
        state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
        state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
    elif key.endswith("in_proj_bias"):
        weights = orig_state_dict[key].chunk(3, 0)
        state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
        state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
        state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
    elif key.endswith("out_proj.weight"):
        weights = orig_state_dict[key]
        state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
    elif key.endswith("out_proj.bias"):
        weights = orig_state_dict[key]
        state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
    else:
        state_dict[key] = orig_state_dict[key]


with accelerate.init_empty_weights():
    prior_model = StableCascadeUNet(
        in_channels=16,
        out_channels=16,
        timestep_ratio_embedding_dim=64,
        patch_size=1,
        conditioning_dim=2048,
        block_out_channels=[2048, 2048],
        num_attention_heads=[32, 32],
        down_num_layers_per_block=[8, 24],
        up_num_layers_per_block=[24, 8],
        down_blocks_repeat_mappers=[1, 1],
        up_blocks_repeat_mappers=[1, 1],
        block_types_per_layer=[
            ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
            ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
        ],
        clip_text_in_channels=1280,
        clip_text_pooled_in_channels=1280,
        clip_image_in_channels=768,
        clip_seq=4,
        kernel_size=3,
        dropout=[0.1, 0.1],
        self_attn=True,
        timestep_conditioning_type=["sca", "crp"],
        switch_level=[False],
    )
load_model_dict_into_meta(prior_model, state_dict)

# scheduler for prior and decoder
scheduler = DDPMWuerstchenScheduler()

# Prior pipeline
prior_pipeline = StableCascadePriorPipeline(
    prior=prior_model,
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    image_encoder=image_encoder,
    scheduler=scheduler,
    feature_extractor=feature_extractor,
)
prior_pipeline.save_pretrained(f"{args.save_org}/StableCascade-prior", push_to_hub=args.push_to_hub)

# Decoder
if args.use_safetensors:
    orig_state_dict = load_file(decoder_checkpoint_path, device=device)
else:
    orig_state_dict = torch.load(decoder_checkpoint_path, map_location=device)

state_dict = {}
for key in orig_state_dict.keys():
    if key.endswith("in_proj_weight"):
        weights = orig_state_dict[key].chunk(3, 0)
        state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
        state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
        state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
    elif key.endswith("in_proj_bias"):
        weights = orig_state_dict[key].chunk(3, 0)
        state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
        state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
        state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
    elif key.endswith("out_proj.weight"):
        weights = orig_state_dict[key]
        state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
    elif key.endswith("out_proj.bias"):
        weights = orig_state_dict[key]
        state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
    # rename clip_mapper to clip_txt_pooled_mapper
    elif key.endswith("clip_mapper.weight"):
        weights = orig_state_dict[key]
        state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
    elif key.endswith("clip_mapper.bias"):
        weights = orig_state_dict[key]
        state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
    else:
        state_dict[key] = orig_state_dict[key]

with accelerate.init_empty_weights():
    decoder = StableCascadeUNet(
        in_channels=4,
        out_channels=4,
        timestep_ratio_embedding_dim=64,
        patch_size=2,
        conditioning_dim=1280,
        block_out_channels=[320, 640, 1280, 1280],
        down_num_layers_per_block=[2, 6, 28, 6],
        up_num_layers_per_block=[6, 28, 6, 2],
        down_blocks_repeat_mappers=[1, 1, 1, 1],
        up_blocks_repeat_mappers=[3, 3, 2, 2],
        num_attention_heads=[0, 0, 20, 20],
        block_types_per_layer=[
            ["SDCascadeResBlock", "SDCascadeTimestepBlock"],
            ["SDCascadeResBlock", "SDCascadeTimestepBlock"],
            ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
            ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
        ],
        clip_text_pooled_in_channels=1280,
        clip_seq=4,
        effnet_in_channels=16,
        pixel_mapper_in_channels=3,
        kernel_size=3,
        dropout=[0, 0, 0.1, 0.1],
        self_attn=True,
        timestep_conditioning_type=["sca"],
    )
load_model_dict_into_meta(decoder, state_dict)

# VQGAN from Wuerstchen-V2
vqmodel = PaellaVQModel.from_pretrained("warp-ai/wuerstchen", subfolder="vqgan")

# Decoder pipeline
decoder_pipeline = StableCascadeDecoderPipeline(
    decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, vqgan=vqmodel, scheduler=scheduler
)
decoder_pipeline.save_pretrained(f"{args.save_org}/StableCascade-decoder", push_to_hub=args.push_to_hub)

# Stable Cascade combined pipeline
stable_cascade_pipeline = StableCascadeCombinedPipeline(
    # Decoder
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    decoder=decoder,
    scheduler=scheduler,
    vqgan=vqmodel,
    # Prior
    prior_text_encoder=text_encoder,
    prior_tokenizer=tokenizer,
    prior_prior=prior_model,
    prior_scheduler=scheduler,
    prior_image_encoder=image_encoder,
    prior_feature_extractor=feature_extractor,
)
stable_cascade_pipeline.save_pretrained(f"{args.save_org}/StableCascade", push_to_hub=args.push_to_hub)