Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
import torchvision.models as models
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
|
| 9 |
+
CLASSES = ['guro', 'pigs', 'proofs', 'protyk', 'safe', 'shit']
|
| 10 |
+
NUM_CLASSES = len(CLASSES)
|
| 11 |
+
|
| 12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
+
|
| 14 |
+
model = models.resnet18(pretrained=True)
|
| 15 |
+
model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES)
|
| 16 |
+
model.load_state_dict(torch.load('best_model.pth'))
|
| 17 |
+
model.to(device)
|
| 18 |
+
model.eval()
|
| 19 |
+
|
| 20 |
+
# Определение трансформаций для изображений
|
| 21 |
+
transform = transforms.Compose([
|
| 22 |
+
transforms.Resize(256),
|
| 23 |
+
transforms.CenterCrop(224),
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
+
# Функция для предсказания
|
| 29 |
+
def predict(img):
|
| 30 |
+
img = Image.fromarray(img)
|
| 31 |
+
img = transform(img)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(img.unsqueeze(0).to(device))
|
| 35 |
+
probabilities = torch.softmax(outputs, dim=1).to('cpu')
|
| 36 |
+
labels = [CLASSES[i] for i in range(len(CLASSES))]
|
| 37 |
+
result = [dict(zip(labels, probabilities.numpy()[0])), dict(zip(labels, probabilities.numpy()[0]))]
|
| 38 |
+
|
| 39 |
+
return result[0]
|
| 40 |
+
|
| 41 |
+
# Интерфейс Gradio
|
| 42 |
+
gr.Interface(fn=predict, inputs="image", outputs="label").launch()
|
| 43 |
+
|