import torch from transformers import pipeline import torch import gradio as gr with gr.Blocks() as demo: def submit(image): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True pipe = pipeline("image-classification", model="./checkpoint-600") output = pipe(images=[image]) result = {} for index, item in enumerate(output[0]): result[item["label"]] = item["score"] return result with gr.Row(): with gr.Column(): image_input = gr.Image(label="Input image", type="filepath") with gr.Column(): label = gr.Label() submit_button = gr.Button(value="Submit", variant="primary") submit_button.click(submit, inputs=[image_input], outputs=label) demo.launch()