annapurnapadmaprema-ji commited on
Commit
44af2df
·
verified ·
1 Parent(s): fc1b4e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -39
app.py CHANGED
@@ -1,44 +1,49 @@
1
  import streamlit as st
2
- import tensorflow as tf
3
  import numpy as np
 
4
  from PIL import Image
5
- import os
6
-
7
-
8
- model = tf.keras.models.load_model('my_cnn_model_7.h5')
9
-
10
-
11
- def predict_image(img):
12
-
13
- img = img.resize((64, 64))
14
- img_array = np.array(img)
15
- img_array = np.expand_dims(img_array, axis=0)
16
- img_array = img_array / 255.0
17
-
18
-
19
- predictions = model.predict(img_array)
20
-
21
- prediction_label = (predictions >= 0.5).astype("int32")
22
-
23
- return prediction_label[0][0]
24
-
25
- # Streamlit UI
26
- st.title("Image Classifier: Real vs Fake")
27
- st.write("Upload an image to classify it as 'Real' or 'Fake'.")
28
-
29
-
30
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
31
-
32
- if uploaded_file is not None:
33
-
34
- img = Image.open(uploaded_file)
35
- img_resized = img.resize((100, 100))
36
- st.image(img_resized, caption="Uploaded Image.", use_container_width=False)
 
 
 
 
 
37
 
 
 
 
 
38
 
39
- if st.button('Classify'):
40
- prediction = predict_image(img)
41
- if prediction == 1:
42
- st.write("Prediction: The given image is **Real**")
43
- else:
44
- st.write("Prediction: The given image is **Fake**")
 
1
  import streamlit as st
 
2
  import numpy as np
3
+ import tensorflow as tf
4
  from PIL import Image
5
+ import cv2
6
+
7
+ # Load the model
8
+ model = tf.keras.models.load_model('cnn_real_fake_4.h5')
9
+
10
+ # Define a function to preprocess the uploaded image
11
+ def preprocess_image(image):
12
+ img_size = (256, 256)
13
+ image = image.resize(img_size) # Resize image
14
+ image = np.array(image) # Convert to numpy array
15
+ image = image / 255.0 # Normalize to [0, 1]
16
+ image = np.expand_dims(image, axis=0) # Add batch dimension
17
+ return image
18
+
19
+ # Define a function for making predictions
20
+ def predict_image(image):
21
+ preprocessed_image = preprocess_image(image)
22
+ prediction = model.predict(preprocessed_image)
23
+ if prediction > 0.5:
24
+ return 'Fake'
25
+ else:
26
+ return 'Real'
27
+
28
+ # Streamlit app interface
29
+ st.title('Real or Fake Image Classifier')
30
+
31
+ st.write("""
32
+ This app allows you to upload an image and classify it as either Real or Fake.
33
+ """)
34
+
35
+ # Upload an image
36
+ uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
37
+
38
+ if uploaded_image is not None:
39
+ # Display the uploaded image
40
+ image = Image.open(uploaded_image)
41
+ st.image(image, caption='Uploaded Image', use_column_width=True)
42
 
43
+ # Predict the image
44
+ st.write("")
45
+ st.write("Classifying the image...")
46
+ result = predict_image(image)
47
 
48
+ # Display the result
49
+ st.write(f"The uploaded image is classified as: **{result}**")