Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,49 @@
|
|
1 |
import streamlit as st
|
2 |
-
import tensorflow as tf
|
3 |
import numpy as np
|
|
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
model = tf.keras.models.load_model('
|
9 |
-
|
10 |
-
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
if prediction == 1:
|
42 |
-
st.write("Prediction: The given image is **Real**")
|
43 |
-
else:
|
44 |
-
st.write("Prediction: The given image is **Fake**")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model = tf.keras.models.load_model('cnn_real_fake_4.h5')
|
9 |
+
|
10 |
+
# Define a function to preprocess the uploaded image
|
11 |
+
def preprocess_image(image):
|
12 |
+
img_size = (256, 256)
|
13 |
+
image = image.resize(img_size) # Resize image
|
14 |
+
image = np.array(image) # Convert to numpy array
|
15 |
+
image = image / 255.0 # Normalize to [0, 1]
|
16 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
17 |
+
return image
|
18 |
+
|
19 |
+
# Define a function for making predictions
|
20 |
+
def predict_image(image):
|
21 |
+
preprocessed_image = preprocess_image(image)
|
22 |
+
prediction = model.predict(preprocessed_image)
|
23 |
+
if prediction > 0.5:
|
24 |
+
return 'Fake'
|
25 |
+
else:
|
26 |
+
return 'Real'
|
27 |
+
|
28 |
+
# Streamlit app interface
|
29 |
+
st.title('Real or Fake Image Classifier')
|
30 |
+
|
31 |
+
st.write("""
|
32 |
+
This app allows you to upload an image and classify it as either Real or Fake.
|
33 |
+
""")
|
34 |
+
|
35 |
+
# Upload an image
|
36 |
+
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
37 |
+
|
38 |
+
if uploaded_image is not None:
|
39 |
+
# Display the uploaded image
|
40 |
+
image = Image.open(uploaded_image)
|
41 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
42 |
|
43 |
+
# Predict the image
|
44 |
+
st.write("")
|
45 |
+
st.write("Classifying the image...")
|
46 |
+
result = predict_image(image)
|
47 |
|
48 |
+
# Display the result
|
49 |
+
st.write(f"The uploaded image is classified as: **{result}**")
|
|
|
|
|
|
|
|