File size: 2,395 Bytes
bc62b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092c47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from audiocraft.models import MusicGen
import streamlit as st
import os 
import torch
import torchaudio
import numpy as np
import base64

@st.cache_resource
def load_model():
    model=MusicGen.get_pretrained("facebook/musicgen-small")
    return model

def generate_music_tensors(description,duration:int):
    print("Description:",description)
    print("Duration:",duration)
    model=load_model()

    model.set_generation_params(
        use_sampling=True,
        top_k=250,
        duration=duration
    )

    output=model.generate(
        descriptions=[description],
        progress=True,
        return_tokens=True
    )
    return output[0]

def save_audio(samples:torch.tensor):
    sample_rate=32000,
    save_path="audio_output/"

    assert samples.dim()==2 or samples.dim()==3
    samples=samples.detach().cpu()

    if samples.dim()==2:
        samples=samples[None,...]
    for idx,audio in enumerate(samples):
        audio_path=os.path.join(save_path,f"audio_{idx}.wav")
        torchaudio.save(audio_path,audio,sample_rate)

def get_binary_file_downloader_html(bin_file,file_label='File'):
    with open(bin_file,'rb') as f:
        data=f.read()
    bin_str=base64.b64encode(data).decode()
    href=f'<a href="data:application/octet-stream;base64,{bin_str} download {(bin_file)}">Download {file_label} from here</a>'
    return href

st.set_page_config(
    page_icon=":musical_note:",
    page_title="Music Gen"
)

def main():
    st.title("Your Music")

    with st.expander("See Explanation"):
        st.write("App is developed by using Meta's Audiocraft Music Gen model. Write your text and we will generate audio")
    text_area=st.text_area("Enter description")
    time_slider=st.slider("Select time duration(s)",2,5,20)
    
    if text_area and time_slider:
        st.json(
            {
                "Description":text_area,
                "Selected duration:":time_slider
            }
        )
        st.subheader("Generated Music")
        music_tensors=generate_music_tensors(text_area,time_slider)
        save_music_file=save_audio(music_tensors)
        audio_file_path='audio_output/audio_0.wav'
        audio_file=open(audio_file_path,'rb')
        audio_bytes=audio_file.read()
        st.audio(audio_bytes)
        st.markdown(get_binary_file_downloader_html,audio_file_path,'Audio',unsafe_allow_html=True)
if __name__=="__main__":
    main()