Spaces:
Build error
Build error
updated_1
Browse files
app.py
CHANGED
@@ -1,70 +1,112 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
import random
|
4 |
import subprocess
|
5 |
-
import
|
|
|
|
|
6 |
from PIL import Image
|
|
|
7 |
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
# ------------------------------------------------------------------------------
|
11 |
-
#
|
12 |
# ------------------------------------------------------------------------------
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe = StableDiffusionPipeline.from_pretrained(
|
21 |
-
|
22 |
torch_dtype=torch.float16
|
23 |
)
|
24 |
pipe.to("cuda")
|
25 |
-
|
26 |
-
# Load
|
27 |
unet = UNet2DConditionModel.from_pretrained(
|
28 |
-
|
29 |
subfolder="unet",
|
30 |
torch_dtype=torch.float16
|
31 |
-
).to(
|
32 |
-
|
33 |
pipe.unet = unet
|
34 |
pipe.safety_checker = dummy_safety_checker
|
35 |
-
|
36 |
return pipe
|
37 |
|
38 |
-
# Similarly, if you want to load Zero123++ or other pipelines:
|
39 |
@st.cache_resource
|
40 |
def load_zero123_pipeline():
|
41 |
-
|
42 |
-
|
43 |
pipeline = DiffusionPipeline.from_pretrained(
|
44 |
-
|
45 |
custom_pipeline="sudo-ai/zero123plus-pipeline",
|
46 |
torch_dtype=torch.float16
|
47 |
)
|
48 |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
49 |
-
pipeline.scheduler.config,
|
|
|
50 |
)
|
51 |
pipeline.to("cuda")
|
52 |
return pipeline
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
os.makedirs(output_dir, exist_ok=True)
|
62 |
-
#
|
63 |
-
st.success(f"SyncDreamer completed.
|
64 |
-
|
65 |
|
66 |
-
# Helper function for Zero123++ pipeline
|
67 |
def make_square_min_dim(image: Image.Image, min_side: int = 320) -> Image.Image:
|
|
|
|
|
|
|
|
|
68 |
w, h = image.size
|
69 |
scale = max(min_side / w, min_side / h, 1.0)
|
70 |
new_w, new_h = int(w * scale), int(h * scale)
|
@@ -77,34 +119,77 @@ def make_square_min_dim(image: Image.Image, min_side: int = 320) -> Image.Image:
|
|
77 |
new_img.paste(image, (offset_x, offset_y))
|
78 |
return new_img
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# ------------------------------------------------------------------------------
|
82 |
-
#
|
83 |
# ------------------------------------------------------------------------------
|
84 |
-
|
85 |
def main():
|
86 |
-
st.title("Funko Generator
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
91 |
-
sd_pipe = load_sd_pipeline(base_model_path, fine_tuned_path)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
# Session state to hold:
|
96 |
if "latest_image" not in st.session_state:
|
97 |
st.session_state["latest_image"] = None
|
98 |
if "original_prompt" not in st.session_state:
|
99 |
st.session_state["original_prompt"] = ""
|
100 |
|
101 |
-
#
|
102 |
-
# A) Prompt
|
103 |
-
#
|
104 |
-
st.subheader("1. Enter your Funko prompt")
|
105 |
|
106 |
-
|
107 |
-
with st.expander("Examples of valid prompts"):
|
108 |
st.write("""
|
109 |
- A standing plain human Funko in a blue shirt and blue pants with round black eyes with glasses with a belt.
|
110 |
- A sitting angry animal Funko with squint black eyes.
|
@@ -112,217 +197,204 @@ def main():
|
|
112 |
- ...
|
113 |
""")
|
114 |
|
115 |
-
user_prompt = st.text_area(
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
|
119 |
-
if
|
120 |
st.session_state["original_prompt"] = user_prompt
|
121 |
-
with st.spinner("Generating
|
122 |
-
|
123 |
-
|
124 |
-
st.session_state["latest_image"] = image
|
125 |
-
|
126 |
st.success("Image generated!")
|
127 |
|
128 |
if st.session_state["latest_image"] is not None:
|
129 |
-
st.image(st.session_state["latest_image"], caption="Latest
|
130 |
|
131 |
-
#
|
132 |
-
# B)
|
133 |
-
#
|
134 |
-
st.subheader("2. Modify Funko
|
135 |
-
|
|
|
136 |
|
137 |
-
# Possible attributes (from your code) — including 'none'
|
138 |
characters = ['none', 'animal', 'human', 'robot']
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
accessories = ['none', 'bag', 'ball', 'belt', 'bird', 'book', 'cape', 'guitar', 'hat', 'helmet', 'sword', 'wand', 'wings']
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
def modify_prompt(base_prompt: str):
|
165 |
-
# A simple example: we can build a new prompt from scratch, ignoring the old text.
|
166 |
-
# In reality, you might parse the old text or do something more sophisticated.
|
167 |
-
new_prompt_segments = []
|
168 |
|
169 |
# Pose
|
170 |
if chosen_pose != 'none':
|
171 |
-
|
172 |
else:
|
173 |
-
|
174 |
|
175 |
# Emotion + Character
|
176 |
if chosen_emotion != 'none':
|
177 |
-
|
178 |
else:
|
179 |
-
|
180 |
-
|
181 |
if chosen_char != 'none':
|
182 |
-
|
183 |
else:
|
184 |
-
|
185 |
|
186 |
# Shirt color
|
187 |
if chosen_shirt_color != 'none':
|
188 |
-
|
189 |
else:
|
190 |
-
|
191 |
|
192 |
# Pants color
|
193 |
if chosen_pants_color != 'none':
|
194 |
-
|
195 |
else:
|
196 |
-
|
197 |
|
198 |
# Eyes
|
199 |
-
|
200 |
if chosen_eyes_shape != 'none':
|
201 |
-
|
202 |
else:
|
203 |
-
|
204 |
if chosen_eyes_color != 'none':
|
205 |
-
|
206 |
else:
|
207 |
-
|
208 |
-
|
209 |
-
new_prompt_segments.append("with " + " ".join(eye_text))
|
210 |
|
211 |
-
|
212 |
-
if chosen_eyewear != 'none':
|
213 |
-
new_prompt_segments.append(f"with {chosen_eyewear}")
|
214 |
|
215 |
-
|
|
|
216 |
if chosen_hair_color != 'none':
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
if chosen_accessories != 'none':
|
221 |
-
new_prompt_segments.append(f"with a {chosen_accessories}")
|
222 |
|
223 |
-
return " ".join(
|
224 |
|
225 |
if st.button("Generate Modified Funko"):
|
226 |
-
if
|
227 |
-
st.warning("Please generate an initial Funko
|
228 |
else:
|
229 |
-
new_prompt =
|
230 |
-
st.write(
|
231 |
-
|
232 |
with st.spinner("Generating modified image..."):
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
st.image(st.session_state["latest_image"], caption="Modified Image", use_column_width=True)
|
238 |
|
239 |
-
#
|
240 |
-
# C) Animate
|
241 |
-
#
|
242 |
-
st.subheader("3. Animate the Funko
|
243 |
-
st.write("Click the button to run SyncDreamer on the last generated image. (Demo)")
|
244 |
|
245 |
-
|
|
|
246 |
if st.session_state["latest_image"] is None:
|
247 |
-
st.warning("No image
|
248 |
else:
|
249 |
-
# Save
|
250 |
input_path = "latest_funko.png"
|
251 |
st.session_state["latest_image"].save(input_path)
|
252 |
-
|
|
|
253 |
|
254 |
-
|
255 |
-
# ...
|
256 |
-
st.success("SyncDreamer animation completed (placeholder).")
|
257 |
|
258 |
-
#
|
259 |
-
# D) Multi-View
|
260 |
-
#
|
261 |
-
st.subheader("4. Generate Multi-View
|
262 |
|
263 |
if st.button("Generate Multi-View 3D"):
|
264 |
if st.session_state["latest_image"] is None:
|
265 |
-
st.warning("No image
|
266 |
else:
|
267 |
-
# Save
|
268 |
-
|
269 |
-
st.session_state["latest_image"].save(
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
(320, 320, 640, 640),
|
290 |
-
(0, 640, 320, 960),
|
291 |
-
(320, 640, 640, 960),
|
292 |
-
]
|
293 |
-
st.write("### Generated Views:")
|
294 |
-
for i, (x1, y1, x2, y2) in enumerate(coords):
|
295 |
-
sub_img = result_grid.crop((x1, y1, x2, y2))
|
296 |
-
sub_path = f"zero123_view_{i}.png"
|
297 |
-
sub_img.save(sub_path)
|
298 |
-
st.image(sub_path, width=256)
|
299 |
-
|
300 |
-
# --------------------------------------------------------------------------
|
301 |
-
# E) Integrate a New Background
|
302 |
-
# --------------------------------------------------------------------------
|
303 |
-
st.subheader("5. Apply a New Background to Each View")
|
304 |
-
|
305 |
-
st.write("Upload a background image, then apply it to each previously generated view.")
|
306 |
-
bg_file = st.file_uploader("Upload Background Image", type=["png", "jpg", "jpeg"])
|
307 |
if bg_file is not None:
|
308 |
-
st.image(bg_file, caption="
|
309 |
|
310 |
-
if st.button("
|
311 |
if bg_file is None:
|
312 |
st.warning("No background uploaded.")
|
313 |
else:
|
314 |
-
#
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
|
|
|
|
|
|
327 |
if __name__ == "__main__":
|
328 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
import random
|
4 |
import subprocess
|
5 |
+
import io
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
from PIL import Image
|
9 |
+
import torch
|
10 |
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
# If you're using Zero123++:
|
14 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
15 |
|
16 |
# ------------------------------------------------------------------------------
|
17 |
+
# 0. GLOBAL CONFIG & UTILS
|
18 |
# ------------------------------------------------------------------------------
|
19 |
|
20 |
+
# Provide your base SD model path & fine-tuned UNet path here.
|
21 |
+
# (In a HF Space, you might store them in a local folder or load from HF repos.)
|
22 |
+
BASE_MODEL_PATH = "runwayml/stable-diffusion-v1-5"
|
23 |
+
FINE_TUNED_PATH = "my_finetuned_unet" # e.g., local folder or HF Hub ID
|
24 |
+
|
25 |
+
# If you want to use Zero123++ from a local clone:
|
26 |
+
ZERO123_MODEL_ID = "sudo-ai/zero123plus-v1.2"
|
27 |
+
|
28 |
+
# Example safety checker dummy, as used in your snippet:
|
29 |
+
def dummy_safety_checker(images, clip_input):
|
30 |
+
return images, False
|
31 |
+
|
32 |
+
# Make sure to remove or comment out any "!pip install ..." lines and rely
|
33 |
+
# on your requirements.txt in the environment.
|
34 |
|
35 |
+
# ------------------------------------------------------------------------------
|
36 |
+
# 1. LOAD MODELS & PIPELINES
|
37 |
+
# ------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def load_sd_pipeline():
|
41 |
+
"""Load the base stable diffusion pipeline with fine-tuned UNet attached."""
|
42 |
pipe = StableDiffusionPipeline.from_pretrained(
|
43 |
+
BASE_MODEL_PATH,
|
44 |
torch_dtype=torch.float16
|
45 |
)
|
46 |
pipe.to("cuda")
|
47 |
+
|
48 |
+
# Load and replace UNet
|
49 |
unet = UNet2DConditionModel.from_pretrained(
|
50 |
+
FINE_TUNED_PATH,
|
51 |
subfolder="unet",
|
52 |
torch_dtype=torch.float16
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
pipe.unet = unet
|
56 |
pipe.safety_checker = dummy_safety_checker
|
|
|
57 |
return pipe
|
58 |
|
|
|
59 |
@st.cache_resource
|
60 |
def load_zero123_pipeline():
|
61 |
+
"""Load Zero123++ pipeline (v1.2) with EulerAncestralDiscreteScheduler."""
|
|
|
62 |
pipeline = DiffusionPipeline.from_pretrained(
|
63 |
+
ZERO123_MODEL_ID,
|
64 |
custom_pipeline="sudo-ai/zero123plus-pipeline",
|
65 |
torch_dtype=torch.float16
|
66 |
)
|
67 |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
68 |
+
pipeline.scheduler.config,
|
69 |
+
timestep_spacing='trailing'
|
70 |
)
|
71 |
pipeline.to("cuda")
|
72 |
return pipeline
|
73 |
|
74 |
+
# ------------------------------------------------------------------------------
|
75 |
+
# 2. HELPER FUNCTIONS
|
76 |
+
# ------------------------------------------------------------------------------
|
77 |
|
78 |
+
def generate_funko_image(pipe, prompt: str, steps: int = 50):
|
79 |
+
"""Generate a Funko image using the loaded Stable Diffusion pipeline."""
|
80 |
+
with torch.autocast("cuda"):
|
81 |
+
image = pipe(prompt, num_inference_steps=steps).images[0]
|
82 |
+
return image
|
83 |
+
|
84 |
+
def run_syncdreamer(input_path: str, output_dir: str):
|
85 |
+
"""
|
86 |
+
Placeholder for the SyncDreamer command-line call.
|
87 |
+
You would adapt this to run your real command. For example:
|
88 |
+
|
89 |
+
syncdreamer_cmd = [
|
90 |
+
"python", "generate.py",
|
91 |
+
"--ckpt", "ckpt/syncdreamer-pretrain.ckpt",
|
92 |
+
"--input", input_path,
|
93 |
+
"--output", output_dir,
|
94 |
+
"--sample_num", "4",
|
95 |
+
"--cfg_scale", "2.0",
|
96 |
+
...
|
97 |
+
]
|
98 |
+
subprocess.run(syncdreamer_cmd, check=True)
|
99 |
+
"""
|
100 |
+
st.info("Running SyncDreamer... (this is a placeholder call)")
|
101 |
os.makedirs(output_dir, exist_ok=True)
|
102 |
+
# In real usage, call the above commented command via subprocess
|
103 |
+
st.success(f"SyncDreamer completed. Output in: {output_dir}")
|
|
|
104 |
|
|
|
105 |
def make_square_min_dim(image: Image.Image, min_side: int = 320) -> Image.Image:
|
106 |
+
"""
|
107 |
+
Resize 'image' so that neither dimension is < min_side,
|
108 |
+
then pad to a square with white background.
|
109 |
+
"""
|
110 |
w, h = image.size
|
111 |
scale = max(min_side / w, min_side / h, 1.0)
|
112 |
new_w, new_h = int(w * scale), int(h * scale)
|
|
|
119 |
new_img.paste(image, (offset_x, offset_y))
|
120 |
return new_img
|
121 |
|
122 |
+
def run_zero123(pipeline, input_image: Image.Image, steps: int = 50):
|
123 |
+
"""Generate a 640x960 grid from Zero123++ pipeline."""
|
124 |
+
cond = make_square_min_dim(input_image, min_side=320)
|
125 |
+
with torch.autocast("cuda"):
|
126 |
+
result_grid = pipeline(cond, num_inference_steps=steps).images[0]
|
127 |
+
return result_grid
|
128 |
+
|
129 |
+
def crop_zero123_grid(grid_img: Image.Image):
|
130 |
+
"""
|
131 |
+
Zero123++ default output for 6-views is 640x960 (2 columns, 3 rows).
|
132 |
+
Crop into six 320x320 sub-images.
|
133 |
+
"""
|
134 |
+
coords = [
|
135 |
+
(0, 0, 320, 320),
|
136 |
+
(320, 0, 640, 320),
|
137 |
+
(0, 320, 320, 640),
|
138 |
+
(320, 320, 640, 640),
|
139 |
+
(0, 640, 320, 960),
|
140 |
+
(320, 640, 640, 960),
|
141 |
+
]
|
142 |
+
sub_images = []
|
143 |
+
for x1, y1, x2, y2 in coords:
|
144 |
+
sub_img = grid_img.crop((x1, y1, x2, y2))
|
145 |
+
sub_images.append(sub_img)
|
146 |
+
return sub_images
|
147 |
+
|
148 |
+
# Example background compositing if desired:
|
149 |
+
def create_mask(image, bg_color=(255,255,255), threshold=30):
|
150 |
+
arr = np.array(image)
|
151 |
+
diff = np.abs(arr - np.array(bg_color))
|
152 |
+
diff = diff.max(axis=2)
|
153 |
+
mask = (diff > threshold) * 255
|
154 |
+
return Image.fromarray(mask.astype(np.uint8), mode="L")
|
155 |
+
|
156 |
+
def composite_foreground_background(fg, bg, bg_color=(255,255,255), threshold=30):
|
157 |
+
fg = fg.convert("RGBA")
|
158 |
+
bg = bg.convert("RGBA").resize(fg.size)
|
159 |
+
mask = create_mask(fg.convert("RGB"), bg_color=bg_color, threshold=threshold)
|
160 |
+
result = Image.composite(fg, bg, mask)
|
161 |
+
return result
|
162 |
+
|
163 |
+
def get_bg_color(image):
|
164 |
+
corner_pixel = image.getpixel((0, 0))
|
165 |
+
# Heuristic: if corner pixel is near-white, treat as white background
|
166 |
+
if sum(corner_pixel) / 3 > 240:
|
167 |
+
return (255, 255, 255)
|
168 |
+
else:
|
169 |
+
return (200, 200, 200)
|
170 |
|
171 |
# ------------------------------------------------------------------------------
|
172 |
+
# 3. STREAMLIT UI
|
173 |
# ------------------------------------------------------------------------------
|
|
|
174 |
def main():
|
175 |
+
st.title("Funko Generator (SD + SyncDreamer + Zero123)")
|
176 |
|
177 |
+
# Load pipelines once
|
178 |
+
sd_pipe = load_sd_pipeline()
|
179 |
+
zero123_pipe = load_zero123_pipeline()
|
|
|
180 |
|
181 |
+
# Session state to store images
|
|
|
|
|
182 |
if "latest_image" not in st.session_state:
|
183 |
st.session_state["latest_image"] = None
|
184 |
if "original_prompt" not in st.session_state:
|
185 |
st.session_state["original_prompt"] = ""
|
186 |
|
187 |
+
# ---------------------------
|
188 |
+
# A) Prompt Input
|
189 |
+
# ---------------------------
|
190 |
+
st.subheader("1. Enter your initial Funko prompt")
|
191 |
|
192 |
+
with st.expander("Prompt Examples"):
|
|
|
193 |
st.write("""
|
194 |
- A standing plain human Funko in a blue shirt and blue pants with round black eyes with glasses with a belt.
|
195 |
- A sitting angry animal Funko with squint black eyes.
|
|
|
197 |
- ...
|
198 |
""")
|
199 |
|
200 |
+
user_prompt = st.text_area(
|
201 |
+
"Type your Funko prompt here:",
|
202 |
+
value="A standing plain human Funko in a blue shirt and blue pants with round black eyes with glasses."
|
203 |
+
)
|
204 |
+
generate_initial = st.button("Generate Initial Funko")
|
205 |
|
206 |
+
if generate_initial:
|
207 |
st.session_state["original_prompt"] = user_prompt
|
208 |
+
with st.spinner("Generating initial Funko..."):
|
209 |
+
out_img = generate_funko_image(sd_pipe, user_prompt, steps=50)
|
210 |
+
st.session_state["latest_image"] = out_img
|
|
|
|
|
211 |
st.success("Image generated!")
|
212 |
|
213 |
if st.session_state["latest_image"] is not None:
|
214 |
+
st.image(st.session_state["latest_image"], caption="Latest Funko Image", use_column_width=True)
|
215 |
|
216 |
+
# ---------------------------
|
217 |
+
# B) Modify Funko Attributes
|
218 |
+
# ---------------------------
|
219 |
+
st.subheader("2. Modify the Funko (attributes)")
|
220 |
+
|
221 |
+
st.write("Pick new attributes. If you choose 'none', we won't override that attribute.")
|
222 |
|
|
|
223 |
characters = ['none', 'animal', 'human', 'robot']
|
224 |
+
eyes_shapes = ['none', 'anime', 'black', 'closed', 'round', 'square', 'squint']
|
225 |
+
eyes_colors = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
226 |
+
eyewears = ['none', 'eyepatch', 'glasses', 'goggles', 'helmet', 'mask', 'sunglasses']
|
227 |
+
hair_colors = ['none', 'black', 'blonde', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
228 |
+
emotions = ['none', 'angry', 'happy', 'plain', 'sad']
|
229 |
+
shirt_colors = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
230 |
+
pants_colors = ['none', 'black', 'blue', 'brown', 'green', 'grey', 'orange', 'pink', 'purple', 'red', 'white', 'yellow']
|
231 |
accessories = ['none', 'bag', 'ball', 'belt', 'bird', 'book', 'cape', 'guitar', 'hat', 'helmet', 'sword', 'wand', 'wings']
|
232 |
+
poses = ['none', 'sitting', 'standing']
|
233 |
+
|
234 |
+
chosen_char = st.selectbox("Character", characters)
|
235 |
+
chosen_eyes_shape = st.selectbox("Eyes Shape", eyes_shapes)
|
236 |
+
chosen_eyes_color = st.selectbox("Eyes Color", eyes_colors)
|
237 |
+
chosen_eyewear = st.selectbox("Eyewear", eyewears)
|
238 |
+
chosen_hair_color = st.selectbox("Hair Color", hair_colors)
|
239 |
+
chosen_emotion = st.selectbox("Emotion", emotions)
|
240 |
+
chosen_shirt_color = st.selectbox("Shirt Color", shirt_colors)
|
241 |
+
chosen_pants_color = st.selectbox("Pants Color", pants_colors)
|
242 |
+
chosen_accessory = st.selectbox("Accessories", accessories)
|
243 |
+
chosen_pose = st.selectbox("Pose", poses)
|
244 |
+
|
245 |
+
def build_modified_prompt():
|
246 |
+
# Simple new prompt builder
|
247 |
+
# If 'none', we do not override the attribute (use fallback or skip).
|
248 |
+
tokens = []
|
|
|
|
|
|
|
|
|
249 |
|
250 |
# Pose
|
251 |
if chosen_pose != 'none':
|
252 |
+
tokens.append(f"A {chosen_pose}")
|
253 |
else:
|
254 |
+
tokens.append("A standing")
|
255 |
|
256 |
# Emotion + Character
|
257 |
if chosen_emotion != 'none':
|
258 |
+
tokens.append(chosen_emotion)
|
259 |
else:
|
260 |
+
tokens.append("plain")
|
|
|
261 |
if chosen_char != 'none':
|
262 |
+
tokens.append(chosen_char + " Funko")
|
263 |
else:
|
264 |
+
tokens.append("human Funko")
|
265 |
|
266 |
# Shirt color
|
267 |
if chosen_shirt_color != 'none':
|
268 |
+
tokens.append(f"in a {chosen_shirt_color} shirt")
|
269 |
else:
|
270 |
+
tokens.append("in a blue shirt")
|
271 |
|
272 |
# Pants color
|
273 |
if chosen_pants_color != 'none':
|
274 |
+
tokens.append(f"and {chosen_pants_color} pants")
|
275 |
else:
|
276 |
+
tokens.append("and blue pants")
|
277 |
|
278 |
# Eyes
|
279 |
+
eye_desc = []
|
280 |
if chosen_eyes_shape != 'none':
|
281 |
+
eye_desc.append(chosen_eyes_shape)
|
282 |
else:
|
283 |
+
eye_desc.append("round")
|
284 |
if chosen_eyes_color != 'none':
|
285 |
+
eye_desc.append(chosen_eyes_color)
|
286 |
else:
|
287 |
+
eye_desc.append("black")
|
288 |
+
eye_desc.append("eyes")
|
|
|
289 |
|
290 |
+
tokens.append("with " + " ".join(eye_desc))
|
|
|
|
|
291 |
|
292 |
+
if chosen_eyewear != 'none':
|
293 |
+
tokens.append(f"with {chosen_eyewear}")
|
294 |
if chosen_hair_color != 'none':
|
295 |
+
tokens.append(f"with {chosen_hair_color} hair")
|
296 |
+
if chosen_accessory != 'none':
|
297 |
+
tokens.append(f"with a {chosen_accessory}")
|
|
|
|
|
298 |
|
299 |
+
return " ".join(tokens) + "."
|
300 |
|
301 |
if st.button("Generate Modified Funko"):
|
302 |
+
if st.session_state["original_prompt"] == "":
|
303 |
+
st.warning("Please generate an initial Funko first.")
|
304 |
else:
|
305 |
+
new_prompt = build_modified_prompt()
|
306 |
+
st.write("**New Prompt**:", new_prompt)
|
|
|
307 |
with st.spinner("Generating modified image..."):
|
308 |
+
out_img = generate_funko_image(sd_pipe, new_prompt, steps=50)
|
309 |
+
st.session_state["latest_image"] = out_img
|
310 |
+
st.image(st.session_state["latest_image"], caption="Modified Funko", use_column_width=True)
|
|
|
|
|
311 |
|
312 |
+
# ---------------------------
|
313 |
+
# C) Animate with SyncDreamer
|
314 |
+
# ---------------------------
|
315 |
+
st.subheader("3. Animate the Funko with SyncDreamer")
|
|
|
316 |
|
317 |
+
st.write("Click to run SyncDreamer on the last generated image (placeholder).")
|
318 |
+
if st.button("Animate Funko"):
|
319 |
if st.session_state["latest_image"] is None:
|
320 |
+
st.warning("No image to animate. Generate a Funko first.")
|
321 |
else:
|
322 |
+
# Save the current image
|
323 |
input_path = "latest_funko.png"
|
324 |
st.session_state["latest_image"].save(input_path)
|
325 |
+
output_dir = "syncdreamer_output"
|
326 |
+
run_syncdreamer(input_path, output_dir=output_dir)
|
327 |
|
328 |
+
st.success("SyncDreamer run complete (demo). Check output directory for results.")
|
|
|
|
|
329 |
|
330 |
+
# ---------------------------
|
331 |
+
# D) Multi-View with Zero123++
|
332 |
+
# ---------------------------
|
333 |
+
st.subheader("4. Generate Multi-View Funko (Zero123++)")
|
334 |
|
335 |
if st.button("Generate Multi-View 3D"):
|
336 |
if st.session_state["latest_image"] is None:
|
337 |
+
st.warning("No image to process. Generate a Funko first.")
|
338 |
else:
|
339 |
+
# Save for Zero123
|
340 |
+
zero123_input_path = "funko_for_zero123.png"
|
341 |
+
st.session_state["latest_image"].save(zero123_input_path)
|
342 |
+
|
343 |
+
with st.spinner("Running Zero123++..."):
|
344 |
+
full_image = run_zero123(zero123_pipe, st.session_state["latest_image"], steps=50)
|
345 |
+
|
346 |
+
# Display the 640x960 grid
|
347 |
+
st.image(full_image, caption="Zero123++ Grid (640x960)", use_column_width=True)
|
348 |
+
|
349 |
+
# Crop sub-images
|
350 |
+
sub_images = crop_zero123_grid(full_image)
|
351 |
+
st.write("Six sub-views:")
|
352 |
+
for i, s_img in enumerate(sub_images):
|
353 |
+
st.image(s_img, width=256, caption=f"View {i+1}")
|
354 |
+
|
355 |
+
# ---------------------------
|
356 |
+
# E) Background Compositing
|
357 |
+
# ---------------------------
|
358 |
+
st.subheader("5. Apply Background to Each View")
|
359 |
+
|
360 |
+
bg_file = st.file_uploader("Upload a background image (PNG/JPG)", type=["png","jpg","jpeg"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
if bg_file is not None:
|
362 |
+
st.image(bg_file, caption="Your Background", width=200)
|
363 |
|
364 |
+
if st.button("Composite Background onto Views"):
|
365 |
if bg_file is None:
|
366 |
st.warning("No background uploaded.")
|
367 |
else:
|
368 |
+
# We assume you already did "Generate Multi-View 3D" so we have "Zero123++ Grid"
|
369 |
+
# In a real scenario, you might store sub-images in session_state after generation
|
370 |
+
# For this example, let's assume we re-run the pipeline or re-crop a stored grid.
|
371 |
+
if st.session_state["latest_image"] is None:
|
372 |
+
st.warning("No Funko image found. Generate or do multi-view first.")
|
373 |
+
else:
|
374 |
+
# We'll read the background
|
375 |
+
bg = Image.open(bg_file).convert("RGBA")
|
376 |
+
|
377 |
+
# Suppose we have a stored "zero123_grid.png" from the step above
|
378 |
+
# This is a simplistic approach. You might track them in session state.
|
379 |
+
if not os.path.exists("zero123_grid.png"):
|
380 |
+
st.warning("No zero123_grid.png found. Please run Zero123++ step first.")
|
381 |
+
else:
|
382 |
+
grid_img = Image.open("zero123_grid.png").convert("RGB")
|
383 |
+
sub_images = crop_zero123_grid(grid_img)
|
384 |
+
|
385 |
+
# Composite each sub-image
|
386 |
+
st.write("Applying background to each sub-view...")
|
387 |
+
for i, fg_img in enumerate(sub_images):
|
388 |
+
# Detect background color from Funko sub-view
|
389 |
+
bg_color = get_bg_color(fg_img)
|
390 |
+
comp = composite_foreground_background(fg_img, bg, bg_color=bg_color, threshold=30)
|
391 |
+
st.image(comp, width=256, caption=f"Composite View {i+1}")
|
392 |
+
|
393 |
+
st.write("---")
|
394 |
+
st.write("End of the demo. Adapt paths and code to your environment as needed.")
|
395 |
|
396 |
+
# ------------------------------------------------------------------------------
|
397 |
+
# 4. ENTRY POINT
|
398 |
+
# ------------------------------------------------------------------------------
|
399 |
if __name__ == "__main__":
|
400 |
main()
|