askveracity / modules /evidence_retrieval.py
ankanghosh's picture
Upload 12 files
5dc3509 verified
raw
history blame
42.5 kB
import logging
import time
import re
import random
import requests
import json
import ssl
from urllib.parse import urlencode
from bs4 import BeautifulSoup
from SPARQLWrapper import SPARQLWrapper, JSON
from datetime import datetime, timedelta
from concurrent.futures import ThreadPoolExecutor, as_completed, wait, FIRST_COMPLETED
from utils.api_utils import api_error_handler, safe_json_parse
from utils.models import get_nlp_model
from modules.claim_extraction import shorten_claim_for_evidence, extract_claims
from modules.rss_feed import retrieve_evidence_from_rss
from modules.semantic_analysis import analyze_evidence_relevance, select_diverse_evidence
from config import SOURCE_CREDIBILITY, NEWS_API_KEY, FACTCHECK_API_KEY
# Import the performance tracker
from utils.performance import PerformanceTracker
performance_tracker = PerformanceTracker()
logger = logging.getLogger("misinformation_detector")
# Define early analysis function at the module level so it's available everywhere
def analyze_early_evidence(claim, source_name, source_evidence):
"""Pre-analyze evidence while waiting for other sources to complete"""
try:
if not source_evidence:
return None
logger.info(f"Pre-analyzing {len(source_evidence)} evidence items from {source_name}")
# Do a quick relevance check using similarity scoring
nlp_model = get_nlp_model()
claim_doc = nlp_model(claim)
relevant_evidence = []
for evidence in source_evidence:
if not isinstance(evidence, str):
continue
# Look for direct keyword matches first (fast check)
is_related = False
keywords = [word.lower() for word in claim.split() if len(word) > 3]
for keyword in keywords:
if keyword in evidence.lower():
is_related = True
break
# If no keywords match, do a basic entity check
if not is_related:
# Check if claim and evidence share any entities
evidence_doc = nlp_model(evidence[:500]) # Limit for speed
claim_entities = [ent.text.lower() for ent in claim_doc.ents]
evidence_entities = [ent.text.lower() for ent in evidence_doc.ents]
common_entities = set(claim_entities).intersection(set(evidence_entities))
if common_entities:
is_related = True
if is_related:
relevant_evidence.append(evidence)
logger.info(f"Found {len(relevant_evidence)} relevant items out of {len(source_evidence)} from {source_name}")
return relevant_evidence
except Exception as e:
logger.error(f"Error in early evidence analysis: {e}")
return source_evidence # On error, return original evidence
# New function to get recent date for filtering news
def get_recent_date_range():
"""Return date range for recent news filtering - last 3 days"""
today = datetime.now()
three_days_ago = today - timedelta(days=3)
return three_days_ago.strftime('%Y-%m-%d'), today.strftime('%Y-%m-%d')
@api_error_handler("wikipedia")
def retrieve_evidence_from_wikipedia(claim):
"""Retrieve evidence from Wikipedia for a given claim"""
logger.info(f"Retrieving evidence from Wikipedia for: {claim}")
# Ensure shortened_claim is a string
try:
shortened_claim = shorten_claim_for_evidence(claim)
except Exception as e:
logger.error(f"Error in claim shortening: {e}")
shortened_claim = claim # Fallback to original claim
# Ensure query_parts is a list of strings
query_parts = str(shortened_claim).split()
evidence = []
source_count = {"wikipedia": 0}
for i in range(len(query_parts), 0, -1): # Start with full query, shorten iteratively
try:
# Safely join and encode query
current_query = "+".join(query_parts[:i])
search_url = f"https://en.wikipedia.org/w/api.php?action=query&list=search&srsearch={current_query}&format=json"
logger.info(f"Wikipedia search URL: {search_url}")
headers = {
"User-Agent": "MisinformationDetectionResearchBot/1.0 (Research Project)"
}
# Make the search request with reduced timeout
response = requests.get(search_url, headers=headers, timeout=7)
response.raise_for_status()
# Safely parse JSON
search_data = safe_json_parse(response, "wikipedia")
# Safely extract search results
search_results = search_data.get("query", {}).get("search", [])
# Ensure search_results is a list
if not isinstance(search_results, list):
logger.warning(f"Unexpected search results type: {type(search_results)}")
search_results = []
# Use ThreadPoolExecutor to fetch page content in parallel
with ThreadPoolExecutor(max_workers=3) as executor:
# Submit up to 3 page requests in parallel
futures = []
for idx, result in enumerate(search_results[:3]):
# Ensure result is a dictionary
if not isinstance(result, dict):
logger.warning(f"Skipping non-dictionary result: {type(result)}")
continue
# Safely extract title
page_title = result.get("title", "")
if not page_title:
continue
page_url = f"https://en.wikipedia.org/wiki/{page_title.replace(' ', '_')}"
# Submit the page request task to executor
futures.append(executor.submit(
fetch_wikipedia_page_content,
page_url,
page_title,
headers
))
# Process completed futures as they finish
for future in as_completed(futures):
try:
page_result = future.result()
if page_result:
evidence.append(page_result)
source_count["wikipedia"] += 1
except Exception as e:
logger.error(f"Error processing Wikipedia page: {e}")
# Stop if we found any evidence
if evidence:
break
except Exception as e:
logger.error(f"Error retrieving from Wikipedia: {str(e)}")
continue
# Ensure success is a boolean
success = bool(evidence)
# Safely log evidence retrieval
try:
performance_tracker.log_evidence_retrieval(success, source_count)
except Exception as e:
logger.error(f"Error logging evidence retrieval: {e}")
if not evidence:
logger.warning("No evidence found from Wikipedia.")
return evidence
def fetch_wikipedia_page_content(page_url, page_title, headers):
"""Helper function to fetch and parse Wikipedia page content"""
try:
# Get page content with reduced timeout
page_response = requests.get(page_url, headers=headers, timeout=5)
page_response.raise_for_status()
# Extract relevant sections using BeautifulSoup
soup = BeautifulSoup(page_response.text, 'html.parser')
paragraphs = soup.find_all('p', limit=3) # Limit to first 3 paragraphs
content = " ".join([para.get_text(strip=True) for para in paragraphs])
# Truncate content to reduce token usage earlier in the pipeline
if len(content) > 300:
content = content[:297] + "..."
if content.strip(): # Ensure content is not empty
return f"Title: {page_title}, URL: {page_url}, Content: {content}"
return None
except Exception as e:
logger.error(f"Error fetching Wikipedia page {page_url}: {e}")
return None
# Update the WikiData function to fix SSL issues
@api_error_handler("wikidata")
def retrieve_evidence_from_wikidata(claim):
"""Retrieve evidence from WikiData for a given claim"""
logger.info(f"Retrieving evidence from WikiData for: {claim}")
# Prepare entities for SPARQL query
shortened_claim = shorten_claim_for_evidence(claim)
query_terms = shortened_claim.split()
# Initialize SPARQLWrapper for WikiData
sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
# Use a more conservative user agent to avoid blocks
sparql.addCustomHttpHeader("User-Agent", "MisinformationDetectionResearchBot/1.0")
# Fix SSL issues by disabling SSL verification for this specific request
try:
# Create a context where we don't verify SSL certs
import ssl
import urllib.request
# Create a context that doesn't verify certificates
ssl_context = ssl._create_unverified_context()
# Monkey patch the opener for SPARQLWrapper
opener = urllib.request.build_opener(urllib.request.HTTPSHandler(context=ssl_context))
urllib.request.install_opener(opener)
except Exception as e:
logger.error(f"Error setting up SSL context: {str(e)}")
# Construct basic SPARQL query for relevant entities
query = """
SELECT ?item ?itemLabel ?description ?article WHERE {
SERVICE wikibase:mwapi {
bd:serviceParam wikibase:api "EntitySearch" .
bd:serviceParam wikibase:endpoint "www.wikidata.org" .
bd:serviceParam mwapi:search "%s" .
bd:serviceParam mwapi:language "en" .
?item wikibase:apiOutputItem mwapi:item .
}
?item schema:description ?description .
FILTER(LANG(?description) = "en")
OPTIONAL {
?article schema:about ?item .
?article schema:isPartOf <https://en.wikipedia.org/> .
}
SERVICE wikibase:label { bd:serviceParam wikibase:language "en" . }
}
LIMIT 5
""" % " ".join(query_terms)
sparql.setQuery(query)
sparql.setReturnFormat(JSON)
try:
results = sparql.query().convert()
wikidata_evidence = []
for result in results["results"]["bindings"]:
entity_label = result.get("itemLabel", {}).get("value", "Unknown")
description = result.get("description", {}).get("value", "No description")
article_url = result.get("article", {}).get("value", "")
# Truncate description to reduce token usage
if len(description) > 200:
description = description[:197] + "..."
evidence_text = f"Entity: {entity_label}, Description: {description}"
if article_url:
evidence_text += f", URL: {article_url}"
wikidata_evidence.append(evidence_text)
logger.info(f"Retrieved {len(wikidata_evidence)} WikiData entities")
return wikidata_evidence
except Exception as e:
logger.error(f"Error retrieving from WikiData: {str(e)}")
return []
@api_error_handler("openalex")
def retrieve_evidence_from_openalex(claim):
"""Retrieve evidence from OpenAlex for a given claim (replacement for Semantic Scholar)"""
logger.info(f"Retrieving evidence from OpenAlex for: {claim}")
try:
shortened_claim = shorten_claim_for_evidence(claim)
query = shortened_claim.replace(" ", "+")
# OpenAlex API endpoint
api_url = f"https://api.openalex.org/works?search={query}&filter=is_paratext:false&per_page=3"
headers = {
"Accept": "application/json",
"User-Agent": "MisinformationDetectionResearchBot/1.0 ([email protected])",
}
scholarly_evidence = []
try:
# Request with reduced timeout
response = requests.get(api_url, headers=headers, timeout=8)
# Check response status
if response.status_code == 200:
# Successfully retrieved data
data = safe_json_parse(response, "openalex")
papers = data.get("results", [])
for paper in papers:
title = paper.get("title", "Unknown Title")
abstract = paper.get("abstract_inverted_index", None)
# OpenAlex stores abstracts in an inverted index format, so we need to reconstruct it
abstract_text = "No abstract available"
if abstract:
try:
# Simple approach to reconstruct from inverted index
# For a production app, implement a proper reconstruction algorithm
words = list(abstract.keys())
abstract_text = " ".join(words[:30]) + "..."
except Exception as e:
logger.error(f"Error reconstructing abstract: {e}")
url = paper.get("doi", "")
if url and not url.startswith("http"):
url = f"https://doi.org/{url}"
year = ""
publication_date = paper.get("publication_date", "")
if publication_date:
year = publication_date.split("-")[0]
# Truncate abstract to reasonable length
if len(abstract_text) > 250:
abstract_text = abstract_text[:247] + "..."
evidence_text = f"Title: {title}, Year: {year}, Abstract: {abstract_text}, URL: {url}"
scholarly_evidence.append(evidence_text)
else:
logger.error(f"OpenAlex API error: {response.status_code}")
except requests.exceptions.Timeout:
logger.warning("OpenAlex request timed out")
except requests.exceptions.ConnectionError:
logger.warning("OpenAlex connection error")
except Exception as e:
logger.error(f"Unexpected error in OpenAlex request: {str(e)}")
logger.info(f"Retrieved {len(scholarly_evidence)} scholarly papers from OpenAlex")
return scholarly_evidence
except Exception as e:
logger.error(f"Fatal error in OpenAlex retrieval: {str(e)}")
return []
@api_error_handler("factcheck")
def retrieve_evidence_from_claimreview(claim):
"""Retrieve evidence from Google's ClaimReview for a given claim"""
logger.info(f"Retrieving evidence from ClaimReview for: {claim}")
factcheck_api_key = FACTCHECK_API_KEY
# Safely shorten claim
try:
shortened_claim = shorten_claim_for_evidence(claim)
except Exception as e:
logger.error(f"Error shortening claim: {e}")
shortened_claim = claim
query_parts = str(shortened_claim).split()
factcheck_results = []
source_count = {"factcheck": 0}
for i in range(len(query_parts), 0, -1): # Iteratively try shorter queries
try:
current_query = " ".join(query_parts[:i])
encoded_query = urlencode({"query": current_query})
factcheck_url = f"https://factchecktools.googleapis.com/v1alpha1/claims:search?{encoded_query}&key={factcheck_api_key}"
logger.info(f"Factcheck URL: {factcheck_url}")
# Make request with reduced timeout
response = requests.get(factcheck_url, timeout=7)
response.raise_for_status()
data = safe_json_parse(response, "factcheck")
# Safely extract claims
claims = data.get("claims", [])
if not isinstance(claims, list):
logger.warning(f"Unexpected claims type: {type(claims)}")
claims = []
if claims: # If results found
logger.info(f"Results found for query '{current_query}'.")
for item in claims:
try:
# Ensure item is a dictionary
if not isinstance(item, dict):
logger.warning(f"Skipping non-dictionary item: {type(item)}")
continue
claim_text = str(item.get("text", ""))
# Truncate claim text
if len(claim_text) > 200:
claim_text = claim_text[:197] + "..."
reviews = item.get("claimReview", [])
# Ensure reviews is a list
if not isinstance(reviews, list):
logger.warning(f"Unexpected reviews type: {type(reviews)}")
reviews = []
for review in reviews:
# Ensure review is a dictionary
if not isinstance(review, dict):
logger.warning(f"Skipping non-dictionary review: {type(review)}")
continue
publisher = str(review.get("publisher", {}).get("name", "Unknown Source"))
rating = str(review.get("textualRating", "Unknown"))
review_url = str(review.get("url", ""))
if claim_text:
factcheck_results.append(
f"Claim: {claim_text}, Rating: {rating}, " +
f"Source: {publisher}, URL: {review_url}"
)
source_count["factcheck"] += 1
except Exception as e:
logger.error(f"Error processing FactCheck result: {e}")
break # Break once we have results
else:
logger.info(f"No results for query '{current_query}', trying shorter version.")
except Exception as e:
logger.error(f"Error in FactCheck retrieval: {e}")
# Safely log evidence retrieval
try:
success = bool(factcheck_results)
performance_tracker.log_evidence_retrieval(success, source_count)
except Exception as e:
logger.error(f"Error logging evidence retrieval: {e}")
if not factcheck_results:
logger.warning("No factcheck evidence found after trying all query variants.")
return factcheck_results
@api_error_handler("newsapi")
def retrieve_news_articles(claim):
"""Retrieve evidence from NewsAPI for a given claim with improved single request approach"""
logger.info(f"Retrieving evidence from News API for: {claim}")
# Get API key
news_api_key = NEWS_API_KEY
if not news_api_key:
logger.error("No NewsAPI key available")
return []
news_results = []
source_count = {"news": 0}
# Get date range for recent news
from_date, to_date = get_recent_date_range()
logger.info(f"Filtering for news from {from_date} to {to_date}")
try:
# Extract a simplified claim for better matching
shortened_claim = shorten_claim_for_evidence(claim)
# Use a single endpoint with proper parameters
encoded_query = urlencode({"q": shortened_claim})
# Use the 'everything' endpoint as it's more comprehensive
news_api_url = f"https://newsapi.org/v2/everything?{encoded_query}&apiKey={news_api_key}&language=en&pageSize=5&sortBy=publishedAt&from={from_date}&to={to_date}"
log_url = news_api_url.replace(news_api_key, "API_KEY_REDACTED")
logger.info(f"Requesting: {log_url}")
# Make a single request with proper headers and reduced timeout
headers = {
"User-Agent": "MisinformationDetectionResearchBot/1.0",
"X-Api-Key": news_api_key,
"Accept": "application/json"
}
response = requests.get(
news_api_url,
headers=headers,
timeout=8
)
logger.info(f"Response status: {response.status_code}")
if response.status_code == 200:
data = safe_json_parse(response, "newsapi")
if data.get("status") == "ok":
articles = data.get("articles", [])
logger.info(f"Found {len(articles)} articles")
for article in articles:
try:
# Robust article parsing
title = str(article.get("title", ""))
description = str(article.get("description", ""))
content = str(article.get("content", ""))
source_name = str(article.get("source", {}).get("name", "Unknown"))
url = str(article.get("url", ""))
published_at = str(article.get("publishedAt", ""))
# Parse date to prioritize recent content
article_date = None
try:
if published_at:
article_date = datetime.strptime(published_at.split('T')[0], '%Y-%m-%d')
except Exception as date_error:
logger.warning(f"Could not parse date: {published_at}")
# Calculate recency score (higher = more recent)
recency_score = 1.0 # Default
if article_date:
days_old = (datetime.now() - article_date).days
if days_old == 0: # Today
recency_score = 3.0
elif days_old == 1: # Yesterday
recency_score = 2.0
# Use description if content is empty or too short
if not content or len(content) < 50:
content = description
# Truncate content to reduce token usage
if len(content) > 250:
content = content[:247] + "..."
# Ensure meaningful content
if title and (content or description):
news_item = {
"text": (
f"Title: {title}, " +
f"Source: {source_name}, " +
f"Date: {published_at}, " +
f"URL: {url}, " +
f"Content: {content}"
),
"recency_score": recency_score,
"date": article_date
}
news_results.append(news_item)
source_count["news"] += 1
logger.info(f"Added article: {title}")
except Exception as article_error:
logger.error(f"Error processing article: {article_error}")
# Sort results by recency
if news_results:
news_results.sort(key=lambda x: x.get('recency_score', 0), reverse=True)
except Exception as query_error:
logger.error(f"Error processing query: {query_error}")
# Convert to plain text list for compatibility with existing code
news_texts = [item["text"] for item in news_results]
# Log evidence retrieval
try:
success = bool(news_texts)
performance_tracker.log_evidence_retrieval(success, source_count)
except Exception as log_error:
logger.error(f"Error logging evidence retrieval: {log_error}")
# Log results
if news_texts:
logger.info(f"Retrieved {len(news_texts)} news articles")
else:
logger.warning("No news articles found")
return news_texts
def retrieve_combined_evidence(claim):
"""
Retrieve evidence from multiple sources in parallel and analyze relevance using semantic similarity
with category-aware source prioritization and optimized parallel processing
"""
logger.info(f"Starting evidence retrieval for: {claim}")
start_time = time.time()
# Use the category detector to prioritize sources
from modules.category_detection import get_prioritized_sources, get_category_specific_rss_feeds
# Get source priorities based on claim category
priorities = get_prioritized_sources(claim)
claim_category = priorities.get("category", "general")
requires_recent_evidence = priorities.get("requires_recent", False)
logger.info(f"Detected claim category: {claim_category} (recent: {requires_recent_evidence})")
# Initialize results dictionary
results = {
"wikipedia": [],
"wikidata": [],
"claimreview": [],
"news": [],
"scholarly": [],
"rss": []
}
# Track source counts and relevant evidence
source_counts = {}
relevant_evidence = {}
total_evidence_count = 0
relevant_evidence_count = 0
# Define primary and secondary sources outside the try block
# so they're available in the except block
primary_sources = []
for source_name in priorities.get("primary", []):
if source_name == "wikipedia":
primary_sources.append(("wikipedia", retrieve_evidence_from_wikipedia, claim))
elif source_name == "wikidata":
primary_sources.append(("wikidata", retrieve_evidence_from_wikidata, claim))
elif source_name == "claimreview":
primary_sources.append(("claimreview", retrieve_evidence_from_claimreview, claim))
elif source_name == "news":
primary_sources.append(("news", retrieve_news_articles, claim))
elif source_name == "scholarly":
primary_sources.append(("scholarly", retrieve_evidence_from_openalex, claim))
elif source_name == "rss":
# Get category-specific RSS max count
max_results = 8 if requires_recent_evidence else 5
# If the claim is science or technology related and we need to optimize
# use category-specific RSS feeds
if claim_category in ["science", "technology", "politics"]:
# Get specialized RSS module to temporarily use category-specific feeds
category_feeds = get_category_specific_rss_feeds(claim_category)
if category_feeds:
primary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results, category_feeds))
else:
primary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results))
else:
primary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results))
# Prepare secondary sources
secondary_sources = []
for source_name in priorities.get("secondary", []):
if source_name == "wikipedia":
secondary_sources.append(("wikipedia", retrieve_evidence_from_wikipedia, claim))
elif source_name == "wikidata":
secondary_sources.append(("wikidata", retrieve_evidence_from_wikidata, claim))
elif source_name == "claimreview":
secondary_sources.append(("claimreview", retrieve_evidence_from_claimreview, claim))
elif source_name == "news":
secondary_sources.append(("news", retrieve_news_articles, claim))
elif source_name == "scholarly":
secondary_sources.append(("scholarly", retrieve_evidence_from_openalex, claim))
elif source_name == "rss":
max_results = 5 if requires_recent_evidence else 3
# Use category-specific feeds if available
if claim_category in ["science", "technology", "politics"]:
category_feeds = get_category_specific_rss_feeds(claim_category)
if category_feeds:
secondary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results, category_feeds))
else:
secondary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results))
else:
secondary_sources.append(("rss", retrieve_evidence_from_rss, claim, max_results))
# Optimize parallel processing for evidence retrieval with early results processing
try:
# Define function to safely retrieve evidence
def safe_retrieve(source_name, retrieval_func, *args):
try:
source_result = retrieval_func(*args) or []
return source_name, source_result
except Exception as e:
logger.error(f"Error retrieving from {source_name}: {str(e)}")
return source_name, []
# Define function to analyze evidence relevance
def analyze_evidence_quick(evidence_items, claim_text):
if not evidence_items or not claim_text:
return []
# Extract important keywords from claim
keywords = [word.lower() for word in claim_text.split() if len(word) > 3]
# Check for direct relevance
relevant_items = []
for evidence in evidence_items:
if not isinstance(evidence, str):
continue
evidence_lower = evidence.lower()
# Check if evidence contains any important keywords from claim
if any(keyword in evidence_lower for keyword in keywords):
relevant_items.append(evidence)
continue
# Check for claim subject in evidence (e.g. "earth" in "earth is flat")
claim_parts = claim_text.split()
if len(claim_parts) > 0 and claim_parts[0].lower() in evidence_lower:
relevant_items.append(evidence)
continue
return relevant_items
# Use ThreadPoolExecutor with a reasonable number of workers
# Start with primary sources first - use all available sources in parallel
with ThreadPoolExecutor(max_workers=min(4, len(primary_sources))) as executor:
# Submit all primary source tasks
futures_to_source = {
executor.submit(safe_retrieve, source_name, func, *args): source_name
for source_name, func, *args in primary_sources
}
# Track completed sources
completed_sources = set()
# Process results as they complete using as_completed for early processing
for future in as_completed(futures_to_source):
try:
source_name, source_results = future.result()
results[source_name] = source_results
source_counts[source_name] = len(source_results)
completed_sources.add(source_name)
logger.info(f"Retrieved {len(source_results)} results from {source_name}")
# Quick relevance analysis
if source_results:
relevant_items = analyze_evidence_quick(source_results, claim)
relevant_evidence[source_name] = relevant_items
total_evidence_count += len(source_results)
relevant_evidence_count += len(relevant_items)
logger.info(f"Found {len(relevant_items)} relevant items out of {len(source_results)} from {source_name}")
# Start background pre-analysis while waiting for other sources
try:
executor.submit(
analyze_early_evidence,
claim,
source_name,
source_results
)
except Exception as e:
logger.error(f"Error in early evidence analysis: {e}")
except Exception as e:
logger.error(f"Error processing future result: {str(e)}")
# Check if we have sufficient RELEVANT evidence from primary sources
# If not enough relevant evidence, query secondary sources
# in parallel even if we have a lot of total evidence
if relevant_evidence_count < 2:
logger.info(f"Only found {relevant_evidence_count} relevant evidence items, querying secondary sources")
# Add Wikipedia and Wikidata if they weren't in primary sources and haven't been queried yet
must_check_sources = []
if "wikipedia" not in completed_sources:
must_check_sources.append(("wikipedia", retrieve_evidence_from_wikipedia, claim))
if "wikidata" not in completed_sources:
must_check_sources.append(("wikidata", retrieve_evidence_from_wikidata, claim))
# Combine with other secondary sources
remaining_sources = must_check_sources + [
(source_name, func, *args) for source_name, func, *args in secondary_sources
if source_name not in completed_sources
]
with ThreadPoolExecutor(max_workers=min(3, len(remaining_sources))) as executor:
# Submit all secondary source tasks
futures_to_source = {
executor.submit(safe_retrieve, source_name, func, *args): source_name
for source_name, func, *args in remaining_sources
}
# Process results as they complete
for future in as_completed(futures_to_source):
try:
source_name, source_results = future.result()
results[source_name] = source_results
source_counts[source_name] = len(source_results)
logger.info(f"Retrieved {len(source_results)} results from {source_name}")
# Quick relevance analysis for these as well
if source_results:
relevant_items = analyze_evidence_quick(source_results, claim)
relevant_evidence[source_name] = relevant_items
total_evidence_count += len(source_results)
relevant_evidence_count += len(relevant_items)
logger.info(f"Found {len(relevant_items)} relevant items out of {len(source_results)} from {source_name}")
except Exception as e:
logger.error(f"Error processing future result: {str(e)}")
except Exception as e:
logger.error(f"Error in parallel evidence retrieval: {str(e)}")
# Fall back to sequential retrieval as a last resort
try:
logger.warning("Falling back to sequential retrieval due to parallel execution failure")
# Sequential retrieval as fallback method - now primary_sources is in scope
for source_name, func, *args in primary_sources:
try:
results[source_name] = func(*args) or []
source_counts[source_name] = len(results[source_name])
except Exception as source_error:
logger.error(f"Error in sequential {source_name} retrieval: {str(source_error)}")
# For sequential retrieval, always check Wikipedia and Wikidata as fallbacks
if "wikipedia" not in completed_sources:
try:
results["wikipedia"] = retrieve_evidence_from_wikipedia(claim) or []
source_counts["wikipedia"] = len(results["wikipedia"])
except Exception as e:
logger.error(f"Error in fallback Wikipedia retrieval: {e}")
if "wikidata" not in completed_sources:
try:
results["wikidata"] = retrieve_evidence_from_wikidata(claim) or []
source_counts["wikidata"] = len(results["wikidata"])
except Exception as e:
logger.error(f"Error in fallback Wikidata retrieval: {e}")
except Exception as fallback_error:
logger.error(f"Error in fallback sequential retrieval: {str(fallback_error)}")
# Gather all evidence
all_evidence = []
for source, items in results.items():
if isinstance(items, list):
for item in items:
if item and isinstance(item, str):
all_evidence.append(item)
# Skip processing if no evidence
if not all_evidence:
logger.warning("No evidence collected")
# Fallback: try direct search for the claim subject
try:
logger.info("No evidence found, trying fallback subject search")
# Extract the main subject using NLP
nlp = get_nlp_model()
doc = nlp(claim)
# Find main subject entities or nouns
subjects = []
for ent in doc.ents:
if ent.label_ in ["PERSON", "ORG", "GPE"]:
subjects.append(ent.text)
# If no entities found, use first noun phrase
if not subjects:
for chunk in doc.noun_chunks:
subjects.append(chunk.text)
break
if subjects:
# Try a direct search with just the subject
logger.info(f"Trying fallback search with subject: {subjects[0]}")
# Make sure we try Wikipedia for the subject regardless of priorities
try:
wiki_evidence = retrieve_evidence_from_wikipedia(subjects[0]) or []
all_evidence.extend(wiki_evidence)
logger.info(f"Retrieved {len(wiki_evidence)} results from fallback Wikipedia search")
except Exception as e:
logger.error(f"Error in fallback Wikipedia search: {e}")
# If still no evidence, try other sources
if not all_evidence:
# Do fallback searches in parallel
with ThreadPoolExecutor(max_workers=2) as executor:
fallback_futures = {
"news": executor.submit(retrieve_news_articles, subjects[0]),
"wikidata": executor.submit(retrieve_evidence_from_wikidata, subjects[0])
}
# Process results as they complete
for source, future in fallback_futures.items():
try:
fallback_results = future.result() or []
if fallback_results:
all_evidence.extend(fallback_results[:2]) # Add up to 2 results from each
logger.info(f"Retrieved {len(fallback_results)} results from fallback {source} search")
except Exception as e:
logger.error(f"Error in fallback {source} search: {str(e)}")
except Exception as subj_error:
logger.error(f"Error in fallback subject search: {str(subj_error)}")
# If still no evidence, return empty list
if not all_evidence:
return []
# Use semantic analysis to score and select the most relevant evidence
try:
# For science and technology claims, boost the weight of scholarly sources
if claim_category in ["science", "technology"]:
from config import SOURCE_CREDIBILITY
# Create a temporary copy with boosted reliability for relevant sources
enhanced_credibility = dict(SOURCE_CREDIBILITY)
# Add enhanced weights for scientific sources
from modules.category_detection import SOURCE_RELIABILITY_BY_CATEGORY
for domain, reliability in SOURCE_RELIABILITY_BY_CATEGORY.get(claim_category, {}).items():
enhanced_credibility[domain] = reliability
# Use the enhanced credibility for evidence analysis
analyzed_evidence = analyze_evidence_relevance(claim, all_evidence, enhanced_credibility)
else:
# Analyze evidence relevance using semantic similarity with default weights
from config import SOURCE_CREDIBILITY
analyzed_evidence = analyze_evidence_relevance(claim, all_evidence, SOURCE_CREDIBILITY)
# Log evidence scoring
logger.info(f"Analyzed {len(analyzed_evidence)} evidence items")
# Select diverse, relevant evidence items
final_evidence = select_diverse_evidence(analyzed_evidence, max_items=5)
# Log source distribution and selected count
logger.info(f"Evidence source distribution: {source_counts}")
logger.info(f"Selected evidence count: {len(final_evidence)}")
# Return maximum 5 evidence items (to control API costs)
return final_evidence[:5]
except Exception as e:
logger.error(f"Error in evidence analysis: {str(e)}")
# Fallback to simple selection (top 5 items)
return all_evidence[:5]