askveracity / modules /classification.py
ankanghosh's picture
Upload 12 files
5dc3509 verified
raw
history blame
28.2 kB
import logging
import re
from utils.models import get_llm_model
from utils.performance import PerformanceTracker
logger = logging.getLogger("misinformation_detector")
performance_tracker = PerformanceTracker()
def classify_with_llm(claim, evidence):
"""
Optimized classification function that handles evidence classification
and verdict generation in a single LLM call with robust parsing
"""
logger.info(f"Classifying evidence for claim: {claim}")
# Get the LLM model
llm_model = get_llm_model()
# Skip if no evidence
if not evidence:
logger.warning("No evidence provided for classification")
return []
# Normalize evidence to a list
if not isinstance(evidence, list):
if evidence:
try:
evidence = [evidence]
except Exception as e:
logger.error(f"Could not convert evidence to list: {e}")
return []
else:
return []
# Does the claim contain strong assertions that require specific evidence?
strong_assertion_markers = [
"solved", "cured", "discovered", "confirmed", "proven", "definitive",
"breakthrough", "revolutionary", "successfully", "first ever", "extends",
"conclusive", "unprecedented", "remarkable", "definitively"
]
# Check if the claim contains strong assertions that would require specific supporting evidence
contains_strong_assertions = any(marker in claim.lower() for marker in strong_assertion_markers)
# Limit to top 5 evidence items to reduce token usage
evidence = evidence[:5]
try:
# Format evidence items
evidence_text = ""
for idx, chunk in enumerate(evidence):
# Truncate long evidence
chunk_text = str(chunk)
if len(chunk_text) > 300:
chunk_text = chunk_text[:297] + "..."
evidence_text += f"EVIDENCE {idx+1}:\n{chunk_text}\n\n"
# Create a structured prompt with explicit formatting instructions
# Adjust instructions based on claim characteristics
if contains_strong_assertions:
prompt = f"""
CLAIM: {claim}
EVIDENCE:
{evidence_text}
TASK: Evaluate if the evidence supports, contradicts, or is irrelevant to the claim.
IMPORTANT CONTEXT: This claim makes strong assertions that require specific supporting evidence.
When evaluating such claims:
1. Strong assertions require strong, direct evidence - look for specific confirmation from credible sources
2. General information about the topic is not sufficient to support specific assertions
3. Evidence of ongoing work or research is not sufficient to support claims of completion or success
4. If the evidence doesn't directly confirm the specific assertion, classify it as "insufficient" rather than "support"
INSTRUCTIONS:
1. For each evidence, provide your analysis in EXACTLY this format:
EVIDENCE 1 ANALYSIS:
Relevance: [relevant/irrelevant]
Classification: [support/contradict/insufficient/irrelevant]
Confidence: [number between 0-100]
Reason: [brief explanation focusing on whether evidence directly confirms the specific assertion]
2. After analyzing all evidence pieces, provide a final verdict in this format:
FINAL VERDICT: [clear statement if evidence collectively supports or contradicts the claim]
Without specific, direct supporting evidence, default to "The evidence does not support the claim" rather than "insufficient evidence."
CRITICAL INSTRUCTION: FOCUS ON THE EXACT CLAIM. Evaluate ONLY the specific claim, not related topics
"""
else:
prompt = f"""
CLAIM: {claim}
EVIDENCE:
{evidence_text}
TASK: Evaluate if the evidence supports, contradicts, or is irrelevant to the claim.
INSTRUCTIONS:
1. For each evidence, provide your analysis in EXACTLY this format:
EVIDENCE 1 ANALYSIS:
Relevance: [relevant/irrelevant]
Classification: [support/contradict/insufficient/irrelevant]
Confidence: [number between 0-100]
Reason: [brief explanation]
2. After analyzing all evidence pieces, provide a final verdict in this format:
FINAL VERDICT: [clear statement if evidence collectively supports or contradicts the claim]
CRITICAL INSTRUCTION: FOCUS ON THE EXACT CLAIM. Evaluate ONLY the specific claim, not related topics
"""
# Get response with temperature=0 for consistency
result = llm_model.invoke(prompt, temperature=0)
result_text = result.content.strip()
# Extract final verdict first since it's most important
final_verdict = None
final_match = re.search(r'FINAL VERDICT:\s*(.*?)(?=\s*$|\n\n)', result_text, re.DOTALL | re.IGNORECASE)
if final_match:
final_verdict = final_match.group(1).strip()
logger.info(f"Final assessment: {final_verdict}")
# Define a precise regex pattern matching the requested format
analysis_pattern = r'EVIDENCE\s+(\d+)\s+ANALYSIS:\s*\n+Relevance:\s*(relevant|irrelevant)\s*\n+Classification:\s*(support|contradict|neutral|irrelevant|insufficient)\s*\n+Confidence:\s*(\d+)\s*\n+Reason:\s*(.*?)(?=\s*EVIDENCE\s+\d+\s+ANALYSIS:|\s*FINAL VERDICT:|\s*$)'
# Parse each evidence analysis
classification_results = []
matched_evidence = set()
# Try matching with our strict pattern first
matches = list(re.finditer(analysis_pattern, result_text, re.IGNORECASE | re.DOTALL))
# If no matches, try a more flexible pattern
if not matches:
flexible_pattern = r'(?:EVIDENCE|Evidence)\s+(\d+)(?:\s+ANALYSIS)?:?\s*\n+(?:Relevance|relevance):\s*(relevant|irrelevant|unknown)\s*\n+(?:Classification|classification):\s*(support|contradict|neutral|irrelevant|insufficient|unknown)\s*\n+(?:Confidence|confidence):\s*(\d+)\s*\n+(?:Reason|reason|Brief reason):\s*(.*?)(?=\s*(?:EVIDENCE|Evidence)\s+\d+|FINAL VERDICT:|$)'
matches = list(re.finditer(flexible_pattern, result_text, re.IGNORECASE | re.DOTALL))
# Process matches
for match in matches:
try:
evidence_idx = int(match.group(1)) - 1
relevance = match.group(2).lower()
classification = match.group(3).lower()
confidence = int(match.group(4))
reason = match.group(5).strip()
# Normalize classification terms
if classification == "neutral":
classification = "insufficient"
# For strong assertions, apply confidence adjustments based on classification
if contains_strong_assertions:
if classification == "support":
# Check if the reasoning indicates direct or indirect support
indirect_support_markers = ["general", "doesn't directly", "does not directly",
"doesn't specifically", "not specific", "related to",
"doesn't confirm"]
if any(marker in reason.lower() for marker in indirect_support_markers):
# Downgrade support confidence for indirect evidence
confidence = max(5, confidence - 20)
elif classification == "contradict":
# For contradictions of strong assertions, slightly boost confidence
confidence = min(95, confidence + 5)
# Ensure index is valid
if 0 <= evidence_idx < len(evidence):
matched_evidence.add(evidence_idx)
# Create result entry
classification_results.append({
"label": classification,
"confidence": confidence / 100.0,
"evidence": evidence[evidence_idx],
"relevance": relevance,
"reason": reason,
"final_assessment": final_verdict
})
except (ValueError, IndexError) as e:
logger.error(f"Error parsing evidence analysis: {e}")
# Handle any unmatched evidence items
if matches: # Only add defaults if we successfully matched some
for idx, ev in enumerate(evidence):
if idx not in matched_evidence:
# Check if the evidence text itself suggests a classification
contains_support = bool(re.search(r'support|confirm|verify|true|correct|released', final_verdict or "", re.IGNORECASE))
contains_contradicting = bool(re.search(r'not yet|hasn\'t|have not|doesn\'t|don\'t|cannot|preliminary|proposed', str(ev).lower()))
# For claims with strong assertions without explicit evidence, be more cautious
if contains_strong_assertions:
if contains_contradicting:
label = "contradict"
confidence = 0.6
elif contains_support:
label = "insufficient" # Default to insufficient for strong assertions without clear analysis
confidence = 0.5
else:
label = "insufficient"
confidence = 0.5
else:
label = "support" if contains_support else "unknown"
confidence = 0.7 if contains_support else 0.5
classification_results.append({
"label": label,
"confidence": confidence,
"evidence": ev,
"relevance": "relevant" if (contains_support or contains_contradicting) else "unknown",
"reason": "Based on overall assessment",
"final_assessment": final_verdict
})
else:
# No structured parsing worked, use final verdict to create simple results
contains_support = bool(re.search(r'support|confirm|verify|true|correct|released', final_verdict or "", re.IGNORECASE))
contains_contradict = bool(re.search(r'contradict|against|false|incorrect|not support|does not support|insufficient evidence|does not confirm|no evidence', final_verdict or "", re.IGNORECASE))
contains_insufficient = bool(re.search(r'insufficient|not enough|cannot determine|no evidence|lack of evidence', final_verdict or "", re.IGNORECASE))
# For claims with strong assertions, be more stringent
if contains_strong_assertions:
if contains_support and not contains_insufficient and not contains_contradict:
label = "support"
confidence = 0.6 # Lower confidence even for support of strong assertions
elif contains_contradict:
label = "contradict"
confidence = 0.8 # Higher confidence for contradiction of strong assertions
else:
label = "insufficient"
confidence = 0.7 # Good confidence for insufficient judgment
else:
label = "support" if contains_support else "contradict" if contains_contradict else "unknown"
confidence = 0.7 if (contains_support or contains_contradict) else 0.5
# Create basic results based on final verdict
for ev in evidence:
classification_results.append({
"label": label,
"confidence": confidence,
"evidence": ev,
"relevance": "relevant" if (contains_support or contains_contradict) else "unknown",
"reason": final_verdict or "Based on collective evidence",
"final_assessment": final_verdict
})
logger.info(f"Classified {len(classification_results)} evidence items")
return classification_results
except Exception as e:
logger.error(f"Error in evidence classification: {str(e)}")
# Provide a basic fallback that checks for keywords in evidence
try:
fallback_results = []
for ev in evidence:
ev_text = str(ev).lower()
supports = False
contradicts = False
# Basic keyword checking as last resort
if claim.lower() in ev_text:
keywords = [word for word in claim.lower().split() if len(word) > 3]
matching_keywords = [k for k in keywords if k in ev_text]
# If substantial keywords match, consider it support
supports = len(matching_keywords) >= max(1, len(keywords) // 2)
# Check for contradiction terms
contradiction_terms = ["not yet", "hasn't", "haven't", "cannot", "can't",
"doesn't", "don't", "no evidence", "insufficient",
"preliminary", "proposed", "in development", "future"]
contradicts = any(term in ev_text for term in contradiction_terms)
# For claims with strong assertions, be more conservative in the fallback case
if contains_strong_assertions:
if contradicts:
fallback_results.append({
"label": "contradict",
"confidence": 0.6,
"evidence": ev,
"relevance": "relevant",
"reason": "Evidence suggests the claim is not yet proven (fallback method)"
})
elif supports:
fallback_results.append({
"label": "insufficient",
"confidence": 0.6,
"evidence": ev,
"relevance": "relevant",
"reason": "Evidence is related but doesn't conclusively confirm the assertion (fallback method)"
})
else:
fallback_results.append({
"label": "unknown",
"confidence": 0.5,
"evidence": ev,
"relevance": "unknown",
"reason": "Cannot determine relevance (fallback method)"
})
else:
fallback_results.append({
"label": "support" if supports else "unknown",
"confidence": 0.6 if supports else 0.5,
"evidence": ev,
"relevance": "relevant" if supports else "unknown",
"reason": "Based on keyword matching (fallback method)"
})
return fallback_results
except:
# Absolute last resort
return [{"label": "unknown", "confidence": 0.5, "evidence": ev} for ev in evidence]
def aggregate_evidence(classification_results):
"""
Aggregate evidence classifications to determine overall verdict
with robust fallback mechanisms for reliable results
"""
logger.info(f"Aggregating evidence from {len(classification_results) if classification_results else 0} results")
if not classification_results:
logger.warning("No classification results to aggregate")
return "Uncertain", 0.3 # Default with low confidence
# Assess the claim's characteristics (without relying on explicit category detection)
# Does the claim contain strong assertions that require specific evidence?
strong_assertion_markers = [
"solved", "cured", "discovered", "confirmed", "proven", "definitive",
"breakthrough", "revolutionary", "successfully", "first ever", "extends",
"conclusive", "unprecedented", "remarkable", "definitively"
]
# Check if claim text is available in final assessment
claim_text = None
claim_has_strong_assertions = False
# Extract claim from final assessment if available
for item in classification_results:
if "final_assessment" in item and item["final_assessment"]:
match = re.search(r'the claim (?:that )?"?([^"]+)"?', item["final_assessment"], re.IGNORECASE)
if match:
claim_text = match.group(1)
claim_has_strong_assertions = any(marker in claim_text.lower() for marker in strong_assertion_markers)
break
# If we couldn't extract the claim, check evidence context for assertion indicators
if not claim_text:
# Check if evidence reasons suggest dealing with strong assertions
assertion_context_indicators = ["conclusive evidence", "definitive proof", "solved", "breakthrough",
"revolutionary", "directly confirms", "specific confirmation"]
reasons = [item.get("reason", "").lower() for item in classification_results if "reason" in item]
assertion_indicators_count = sum(1 for indicator in assertion_context_indicators
for reason in reasons if indicator in reason)
claim_has_strong_assertions = assertion_indicators_count >= 2
# Extract final assessment if present
final_assessment = None
for item in classification_results:
if "final_assessment" in item and item["final_assessment"]:
final_assessment = item["final_assessment"]
break
# Count evidence by classification
support_items = [item for item in classification_results if item.get("label") == "support"]
contradict_items = [item for item in classification_results if item.get("label") == "contradict"]
insufficient_items = [item for item in classification_results if item.get("label") in ["insufficient", "neutral"]]
relevant_items = [item for item in classification_results
if item.get("relevance") == "relevant" or item.get("label") in ["support", "contradict"]]
# Calculate the proportion of supported evidence
total_relevant = len(relevant_items)
# Direct keyword detection from final assessment or evidence
if final_assessment:
# Check for support indicators in final assessment
supports_pattern = r'\b(support|confirm|verify|true|correct|released|proves|validates|evidence (?:that |for |of )(?:the claim|it) is true)\b'
contradicts_pattern = r'\b(contradict|refute|deny|false|incorrect|not released|doesn\'t support|does not support|no evidence|cannot support|is not true|evidence (?:that |for |of )(?:the claim|it) is false)\b'
insufficient_pattern = r'\b(uncertain|insufficient|not enough|inconclusive|cannot determine|unable to determine|lack of evidence)\b'
supports_match = re.search(supports_pattern, final_assessment, re.IGNORECASE)
contradicts_match = re.search(contradicts_pattern, final_assessment, re.IGNORECASE)
insufficient_match = re.search(insufficient_pattern, final_assessment, re.IGNORECASE)
# Direct determination based on final assessment keywords
if supports_match and not contradicts_match and not insufficient_match:
# Get max confidence from supporting evidence
confidence = max([item.get("confidence", 0) for item in support_items]) if support_items else 0.7
# Adjust confidence for claims with strong assertions
if claim_has_strong_assertions:
confidence = min(confidence, 0.8) # Cap confidence for strong assertions
return "True (Based on Evidence)", max(0.6, confidence) # Minimum 0.6 confidence
if contradicts_match and not supports_match:
# Get max confidence from contradicting evidence
confidence = max([item.get("confidence", 0) for item in contradict_items]) if contradict_items else 0.7
# For claims with strong assertions, increase confidence in contradiction
if claim_has_strong_assertions:
confidence = max(confidence, 0.7) # Minimum 0.7 confidence for contradicting strong assertions
return "False (Based on Evidence)", max(0.6, confidence) # Minimum 0.6 confidence
if insufficient_match:
# For claims with strong assertions without confirming evidence,
# change "Uncertain" to a clearer negative verdict
if claim_has_strong_assertions:
return "False (Based on Evidence)", 0.7
return "Uncertain", 0.4 # Medium-low confidence
# If we have distinct classifications, weigh them by confidence and quantity
if support_items and (not contradict_items or all(item.get("confidence", 0) < 0.95 for item in contradict_items)):
# Check if there's high confidence support evidence (greater than 0.95)
high_confidence_support = [item for item in support_items if item.get("confidence", 0) > 0.95]
if high_confidence_support:
# High confidence support evidence exists, use it even if there are some contradictions
confidence = max([item.get("confidence", 0) for item in high_confidence_support])
# For claims with strong assertions, be more conservative with pure support
if claim_has_strong_assertions:
confidence = min(confidence, 0.8)
return "True (Based on Evidence)", max(0.7, confidence)
elif not contradict_items:
# All supportive evidence with no contradictions (standard case)
confidence = max([item.get("confidence", 0) for item in support_items])
# For claims with strong assertions, be more conservative with pure support
if claim_has_strong_assertions:
# For strong assertions with only support but no contradictions, be cautious
confidence = min(confidence, 0.7)
# If the support is from low-quality evidence, consider it uncertain
support_reasons = [item.get("reason", "").lower() for item in support_items]
weak_supports = sum(1 for reason in support_reasons if
"general information" in reason or
"doesn't specify" in reason or
"does not directly" in reason)
if weak_supports / max(1, len(support_items)) > 0.5:
return "Uncertain", 0.6
return "True (Based on Evidence)", max(0.6, confidence)
if contradict_items and not support_items:
# All contradicting evidence
confidence = max([item.get("confidence", 0) for item in contradict_items])
# For claims with strong assertions, increase confidence in contradiction
if claim_has_strong_assertions:
confidence = max(confidence, 0.7)
return "False (Based on Evidence)", max(0.6, confidence)
if insufficient_items and len(insufficient_items) > len(support_items) + len(contradict_items):
# Mostly insufficient evidence
# For claims with strong assertions and mainly insufficient evidence, lean toward "False"
if claim_has_strong_assertions:
return "False (Based on Evidence)", 0.7
return "Uncertain", 0.5 # Medium confidence for explicitly uncertain
if support_items and contradict_items:
# Competing evidence - compare confidence and quantity
support_confidence = max([item.get("confidence", 0) for item in support_items])
contradict_confidence = max([item.get("confidence", 0) for item in contradict_items])
# For claims with strong assertions, require stronger support to overcome contradiction
if claim_has_strong_assertions:
# Higher threshold for strong assertions
if support_confidence > contradict_confidence + 0.3:
return "True (Based on Evidence)", support_confidence * 0.9 # Apply a confidence penalty
elif contradict_confidence >= support_confidence - 0.1: # Lower threshold for contradiction
return "False (Based on Evidence)", max(contradict_confidence, 0.7) # Minimum 0.7 confidence
else:
# Default to uncertain for close calls on strong assertions
return "Uncertain", 0.6
else:
# Standard threshold for regular claims
if support_confidence > contradict_confidence + 0.2:
return "True (Based on Evidence)", support_confidence
elif contradict_confidence > support_confidence + 0.2:
return "False (Based on Evidence)", contradict_confidence
else:
# Close call - check quantity of evidence
if len(support_items) > len(contradict_items) * 2:
return "True (Based on Evidence)", support_confidence * 0.9 # Slight confidence penalty
elif len(contradict_items) > len(support_items) * 2:
return "False (Based on Evidence)", contradict_confidence * 0.9 # Slight confidence penalty
else:
# Truly conflicting evidence
return "Uncertain", 0.5 # Medium confidence
# Check for evidence quality issues
all_unknown = all(item.get("label") == "unknown" for item in classification_results)
evidence_text = " ".join([str(item.get("evidence", "")) for item in classification_results])
# General case: For any claims with all unknown labels that contain markers of strong assertions
if all_unknown and claim_has_strong_assertions:
# Absence of clear supporting evidence for claims with strong assertions points to "False"
return "False (Based on Evidence)", 0.7
# For general claims, if all items are unknown but evidence clearly mentions the claim
if all_unknown:
# Examples of direct evidence matching as fallback
if re.search(r'\bllama\s*4\b', evidence_text, re.IGNORECASE) and re.search(r'\bmeta\b|\bfacebook\b', evidence_text, re.IGNORECASE) and re.search(r'\breleas', evidence_text, re.IGNORECASE):
return "True (Based on Evidence)", 0.7
elif re.search(r'\bnot\s+releas', evidence_text, re.IGNORECASE) or re.search(r'\bdenies\b|\bdenied\b', evidence_text, re.IGNORECASE):
return "False (Based on Evidence)", 0.7
# Default to uncertain if no clear pattern - but with special case for claims with strong assertions
if claim_has_strong_assertions:
# For claims with strong assertions with no clear evidence, default to false
return "False (Based on Evidence)", 0.7
return "Uncertain", 0.3