askveracity / app.py
ankanghosh's picture
Update app.py
59fdc19 verified
raw
history blame
23 kB
"""
Main Streamlit application for the Fake News Detector.
This module implements the user interface for claim verification,
rendering the results and handling user interactions. It also
manages the application lifecycle including initialization and cleanup.
"""
import streamlit as st
import time
import json
import os
import logging
import atexit
import sys
from pathlib import Path
# Configure logging first, before other imports
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger("misinformation_detector")
# Check for critical environment variables
if not os.environ.get("OPENAI_API_KEY"):
logger.warning("OPENAI_API_KEY not set. Please configure this in your Hugging Face Spaces secrets.")
# Import our modules
from utils.models import initialize_models
from utils.performance import PerformanceTracker
# Import agent functionality
import agent
# Initialize performance tracker
performance_tracker = PerformanceTracker()
# Ensure data directory exists
data_dir = Path("data")
if not data_dir.exists():
logger.info("Creating data directory")
data_dir.mkdir(exist_ok=True)
# Set page configuration
st.set_page_config(
page_title="AskVeracity",
page_icon="πŸ”",
layout="wide",
)
# Hide the "Press ⌘+Enter to apply" text with CSS
st.markdown("""
<style>
/* Hide the shortcut text that appears at the bottom of text areas */
.stTextArea div:has(textarea) + div {
visibility: hidden !important;
height: 0px !important;
position: absolute !important;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def get_agent():
"""
Initialize and cache the agent for reuse across requests.
This function creates and caches the fact-checking agent to avoid
recreating it for every request. It's decorated with st.cache_resource
to ensure the agent is only initialized once per session.
Returns:
object: Initialized LangGraph agent for fact checking
"""
logger.info("Initializing models and agent (cached)")
initialize_models()
return agent.setup_agent()
def cleanup_resources():
"""
Clean up resources when app is closed.
This function is registered with atexit to ensure resources
are properly released when the application terminates.
"""
try:
# Clear any cached data
st.cache_data.clear()
# Reset performance tracker
performance_tracker.reset()
# Log cleanup
logger.info("Resources cleaned up successfully")
except Exception as e:
logger.error(f"Error during cleanup: {e}")
# Register cleanup handler
atexit.register(cleanup_resources)
# App title and description
st.title("πŸ” AskVeracity")
st.markdown("""
This is a simple AI-powered tool - a fact-checking system that analyzes claims to determine
their truthfulness by gathering and analyzing evidence from various sources, such as Wikipedia,
news outlets, and academic repositories.
""")
# Sidebar with app information
with st.sidebar:
st.header("About")
st.info(
"This system uses a combination of NLP techniques and LLMs to "
"extract claims, gather evidence, and classify the truthfulness of statements."
)
# Application information
st.markdown("### How It Works")
st.info(
"1. Enter any recent news or a factual claim\n"
"2. Our AI gathers evidence from Wikipedia, news sources, and academic repositories\n"
"3. The system analyzes the evidence to determine truthfulness\n"
"4. Results show the verdict with supporting evidence"
)
# Our Mission
st.markdown("### Our Mission")
st.info(
"AskVeracity aims to combat misinformation in real-time through an open-source application built with accessible tools. "
"We believe in empowering people with factual information to make informed decisions."
)
# Limitations and Usage
st.markdown("### Limitations")
st.warning(
"Due to resource constraints, AskVeracity may not always provide real-time results with perfect accuracy. "
"Performance is typically best with widely-reported news and information published within the last 48 hours. "
"Additionally, the system evaluates claims based on current evidence - a claim that was true in the past "
"may be judged false if circumstances have changed, and vice versa."
)
# Best Practices
st.markdown("### Best Practices")
st.success(
"For optimal results:\n\n"
"β€’ Keep claims short and precise\n\n"
"β€’ Include key details in your claim\n\n"
"β€’ Phrase claims as direct statements rather than questions\n\n"
"β€’ Be specific about who said what"
)
# Example comparison
with st.expander("πŸ“ Examples of Effective Claims"):
st.markdown("""
**Less precise:** "Country A-Country B Relations Are Moving in Positive Direction as per Country B Minister John Doe."
**More precise:** "Country B's External Affairs Minister John Doe has claimed that Country A-Country B Relations Are Moving in Positive Direction."
""")
# Important Notes
st.markdown("### Important Notes")
st.info(
"β€’ AskVeracity covers general topics and is not specialized in any single domain or location\n\n"
"β€’ Results can vary based on available evidence and LLM behavior\n\n"
"β€’ The system is designed to indicate uncertainty when evidence is insufficient\n\n"
"β€’ AskVeracity is not a chatbot and does not maintain conversation history\n\n"
"β€’ We recommend cross-verifying critical information with additional sources"
)
# Privacy Information
st.markdown("### Data Privacy")
st.info(
"We do not collect or store any data about the claims you submit. "
"Your interactions are processed by OpenAI's API. Please refer to "
"[OpenAI's privacy policy](https://openai.com/policies/privacy-policy) for details on their data handling practices."
)
# Feedback Section
st.markdown("### Feedback")
st.success(
"AskVeracity is evolving and we welcome your feedback to help us improve. "
"Please reach out to us with questions, suggestions, or concerns."
)
# Initialize session state variables
if 'processing' not in st.session_state:
st.session_state.processing = False
if 'claim_to_process' not in st.session_state:
st.session_state.claim_to_process = ""
if 'has_result' not in st.session_state:
st.session_state.has_result = False
if 'result' not in st.session_state:
st.session_state.result = None
if 'total_time' not in st.session_state:
st.session_state.total_time = 0
if 'fresh_state' not in st.session_state:
st.session_state.fresh_state = True
# Main interface
st.markdown("### Enter a claim to verify")
# Input area
claim_input = st.text_area("",
height=100,
placeholder=(
"Examples: The Eiffel Tower is located in Rome, Italy. "
"Meta recently released its Llama 4 large language model. "
"Justin Trudeau is not the Canadian Prime Minister anymore. "
"China retaliated with 125% tariffs against U.S. imports. "
"A recent piece of news."
),
key="claim_input_area",
label_visibility="collapsed",
max_chars=None)
# Information about result variability
st.caption("""
πŸ’‘ **Note:** Results may vary slightly each time, even for the same claim. This is by design, allowing our system to:
- Incorporate the most recent evidence available
- Benefit from the AI's ability to consider multiple perspectives
- Adapt to evolving information landscapes
""")
st.warning("⏱️ **Note:** Processing times may vary from 10 seconds to 2 minutes depending on query complexity, available evidence, and current API response times.")
# Button for verifying claim
# Note: Button styling will differ between local environment and Hugging Face Spaces
# due to Hugging Face's theme overrides. This is expected behavior.
verify_button = st.button(
"Verify Claim",
type="primary",
disabled=st.session_state.processing,
key="verify_btn"
)
# Create a clean interface
if st.session_state.fresh_state:
# Show a clean interface for the first query or when we need to reset
analysis_placeholder = st.empty()
# When button is clicked and not already processing
if verify_button and not st.session_state.processing:
if not claim_input:
st.error("Please enter a claim to verify.")
else:
# Store the claim and set processing state
st.session_state.claim_to_process = claim_input
st.session_state.processing = True
st.session_state.fresh_state = False
# Force a rerun to refresh UI
st.rerun()
else:
# This is either during processing or showing results
# Create a container for processing and results
analysis_container = st.container()
with analysis_container:
# If we're processing, show the processing UI
if st.session_state.processing:
st.subheader("πŸ”„ Processing...")
status = st.empty()
status.text("Verifying claim... (this may take a while)")
progress_bar = st.progress(0)
# Initialize models and agent if needed
if not hasattr(st.session_state, 'agent_initialized'):
with st.spinner("Initializing system..."):
st.session_state.agent = get_agent()
st.session_state.agent_initialized = True
try:
# Use the stored claim for processing
claim_to_process = st.session_state.claim_to_process
# Process the claim with the agent
start_time = time.time()
result = agent.process_claim(claim_to_process, st.session_state.agent)
total_time = time.time() - start_time
# Update progress as claim processing completes
progress_bar.progress(100)
# Check for None result
if result is None:
st.error("Failed to process the claim. Please try again.")
st.session_state.processing = False
st.session_state.fresh_state = True
else:
# If result exists but key values are missing, provide default values
if "classification" not in result or result["classification"] is None:
result["classification"] = "Uncertain"
if "confidence" not in result or result["confidence"] is None:
result["confidence"] = 0.6 # Default to 0.6 instead of 0.0
if "explanation" not in result or result["explanation"] is None:
result["explanation"] = "Insufficient evidence was found to determine the truthfulness of this claim."
# Update result with timing information
if "processing_times" not in result:
result["processing_times"] = {"total": total_time}
# Store the result and timing information
st.session_state.result = result
st.session_state.total_time = total_time
st.session_state.has_result = True
st.session_state.processing = False
# Clear processing indicators before showing results
status.empty()
progress_bar.empty()
# Force rerun to display results
st.rerun()
except Exception as e:
# Handle any exceptions and reset processing state
logger.error(f"Error during claim processing: {str(e)}")
st.error(f"An error occurred: {str(e)}")
st.session_state.processing = False
st.session_state.fresh_state = True
# Force rerun to re-enable button
st.rerun()
# Display results if available
elif st.session_state.has_result and st.session_state.result:
result = st.session_state.result
total_time = st.session_state.total_time
claim_to_process = st.session_state.claim_to_process
st.subheader("πŸ“Š Verification Results")
result_col1, result_col2 = st.columns([2, 1])
with result_col1:
# Display both original and processed claim if they differ
if "claim" in result and result["claim"] and result["claim"] != claim_to_process:
st.markdown(f"**Original Claim:** {claim_to_process}")
st.markdown(f"**Processed Claim:** {result['claim']}")
else:
st.markdown(f"**Claim:** {claim_to_process}")
# Make verdict colorful based on classification
truth_label = result.get('classification', 'Uncertain')
if truth_label and "True" in truth_label:
verdict_color = "green"
elif truth_label and "False" in truth_label:
verdict_color = "red"
else:
verdict_color = "gray"
st.markdown(f"**Verdict:** <span style='color:{verdict_color};font-size:1.2em'>{truth_label}</span>", unsafe_allow_html=True)
# Ensure confidence value is used
if "confidence" in result and result["confidence"] is not None:
confidence_value = result["confidence"]
# Make sure confidence is a numeric value between 0 and 1
try:
confidence_value = float(confidence_value)
if confidence_value < 0:
confidence_value = 0.0
elif confidence_value > 1:
confidence_value = 1.0
except (ValueError, TypeError):
confidence_value = 0.6 # Fallback to reasonable default
else:
confidence_value = 0.6 # Default confidence
# Display the confidence
st.markdown(f"**Confidence:** {confidence_value:.2%}")
st.markdown(f"**Explanation:** {result.get('explanation', 'No explanation available.')}")
# Add disclaimer about cross-verification
st.info("⚠️ **Note:** Please cross-verify important information with additional reliable sources.")
with result_col2:
st.markdown("**Processing Time**")
times = result.get("processing_times", {"total": total_time})
st.markdown(f"- **Total:** {times.get('total', total_time):.2f}s")
# Show agent thoughts
if "thoughts" in result and result["thoughts"]:
st.markdown("**AI Reasoning Process**")
thoughts = result.get("thoughts", [])
for i, thought in enumerate(thoughts[:5]): # Show top 5 thoughts
st.markdown(f"{i+1}. {thought}")
if len(thoughts) > 5:
with st.expander("Show all reasoning steps"):
for i, thought in enumerate(thoughts):
st.markdown(f"{i+1}. {thought}")
# Display evidence
st.subheader("πŸ“ Evidence")
evidence_count = result.get("evidence_count", 0)
evidence = result.get("evidence", [])
# Ensure evidence is a list
if not isinstance(evidence, list):
if isinstance(evidence, str):
# Try to parse string as a list
try:
import ast
parsed_evidence = ast.literal_eval(evidence)
if isinstance(parsed_evidence, list):
evidence = parsed_evidence
else:
evidence = [evidence]
except:
evidence = [evidence]
else:
evidence = [str(evidence)] if evidence else []
# Update evidence count based on actual evidence list
evidence_count = len(evidence)
# Check for empty evidence
if evidence_count == 0 or not any(ev for ev in evidence if ev):
st.warning("No relevant evidence was found for this claim. The verdict may not be reliable.")
else:
st.markdown(f"Retrieved {evidence_count} pieces of evidence")
# Get classification results
classification_results = result.get("classification_results", [])
# Only show evidence tabs if we have evidence
if evidence and any(ev for ev in evidence if ev):
# Create tabs for different evidence categories
evidence_tabs = st.tabs(["All Evidence", "Top Evidence", "Evidence Details"])
with evidence_tabs[0]:
for i, ev in enumerate(evidence):
if ev and isinstance(ev, str) and ev.strip(): # Only show non-empty evidence
with st.expander(f"Evidence {i+1}", expanded=i==0):
st.text(ev)
with evidence_tabs[1]:
if classification_results:
# Check if classification_results items have the expected format
valid_results = []
for res in classification_results:
if isinstance(res, dict) and "confidence" in res and "evidence" in res and "label" in res:
if res.get("evidence"): # Only include results with actual evidence
valid_results.append(res)
if valid_results:
sorted_results = sorted(valid_results, key=lambda x: x.get("confidence", 0), reverse=True)
top_results = sorted_results[:min(3, len(sorted_results))]
for i, res in enumerate(top_results):
with st.expander(f"Top Evidence {i+1} (Confidence: {res.get('confidence', 0):.2%})", expanded=i == 0):
st.text(res.get("evidence", "No evidence text available"))
st.markdown(f"**Classification:** {res.get('label', 'unknown')}")
else:
# If no valid results, just show the evidence
shown = False
for i, ev in enumerate(evidence[:3]):
if ev and isinstance(ev, str) and ev.strip():
with st.expander(f"Evidence {i+1}", expanded=i==0):
st.text(ev)
shown = True
if not shown:
st.info("No detailed classification results available.")
else:
# Just show regular evidence if no classification details
shown = False
for i, ev in enumerate(evidence[:3]):
if ev and isinstance(ev, str) and ev.strip():
with st.expander(f"Evidence {i+1}", expanded=i==0):
st.text(ev)
shown = True
if not shown:
st.info("No detailed classification results available.")
with evidence_tabs[2]:
evidence_sources = {}
for ev in evidence:
if not ev or not isinstance(ev, str):
continue
source = "Unknown"
# Extract source info from evidence text
if "URL:" in ev:
import re
url_match = re.search(r'URL: https?://(?:www\.)?([^/]+)', ev)
if url_match:
source = url_match.group(1)
if source in evidence_sources:
evidence_sources[source] += 1
else:
evidence_sources[source] = 1
# Display evidence source distribution
if evidence_sources:
st.markdown("**Evidence Source Distribution**")
for source, count in evidence_sources.items():
st.markdown(f"- {source}: {count} item(s)")
else:
st.info("No source information available in the evidence.")
else:
st.warning("No evidence was retrieved for this claim.")
# Button to start a new verification
if st.button("Verify Another Claim", type="primary", key="new_verify_btn"):
# Reset to fresh state for a new verification
st.session_state.fresh_state = True
st.session_state.has_result = False
st.session_state.result = None
st.rerun()
# Footer with additional information
st.markdown("---")
st.caption("""
**AskVeracity** is an open-source tool designed to help combat misinformation through transparent evidence gathering and analysis.
While we strive for accuracy, the system has inherent limitations based on available data sources, API constraints, and the evolving nature of information.
""")