Spaces:
Running
Running
File size: 47,579 Bytes
5dc3509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
import logging
import re
from typing import Tuple, List, Dict, Optional
import os
import time
# Set up logging
logger = logging.getLogger("misinformation_detector")
# Define categories and their keywords
CLAIM_CATEGORIES = {
"ai": [
# General AI terms
"AI", "artificial intelligence", "machine learning", "ML", "deep learning", "DL",
"neural network", "neural nets", "generative AI", "GenAI", "AGI", "artificial general intelligence",
"transformer", "attention mechanism", "fine-tuning", "pre-training", "training", "inference",
# AI Models and Architectures
"language model", "large language model", "LLM", "foundation model", "multimodal model",
"vision language model", "VLM", "text-to-speech", "TTS", "speech-to-text", "STT",
"text-to-image", "image-to-text", "diffusion model", "generative model", "discriminative model",
"GPT", "BERT", "T5", "PaLM", "Claude", "Llama", "Gemini", "Mistral", "Mixtral", "Stable Diffusion",
"Dall-E", "Midjourney", "Sora", "transformer", "MoE", "mixture of experts", "sparse model",
"dense model", "encoder", "decoder", "encoder-decoder", "autoencoder", "VAE",
"mixture of experts", "MoE", "sparse MoE", "switch transformer", "gated experts",
"routing network", "expert routing", "pathways", "multi-query attention", "multi-head attention",
"rotary position embedding", "RoPE", "grouped-query attention", "GQA", "flash attention",
"state space model", "SSM", "mamba", "recurrent neural network", "RNN", "LSTM", "GRU",
"convolutional neural network", "CNN", "residual connection", "skip connection", "normalization",
"layer norm", "group norm", "batch norm", "parameter efficient fine-tuning", "PEFT",
"LoRA", "low-rank adaptation", "QLoRA", "adapters", "prompt tuning", "prefix tuning",
# AI Learning Paradigms
"supervised learning", "unsupervised learning", "reinforcement learning", "RL",
"meta-learning", "transfer learning", "federated learning", "self-supervised learning",
"semi-supervised learning", "few-shot learning", "zero-shot learning", "one-shot learning",
"contrastive learning", "curriculum learning", "imitation learning", "active learning",
"reinforcement learning from human feedback", "RLHF", "direct preference optimization", "DPO",
"constitutional AI", "red teaming", "adversarial training", "GAN", "generative adversarial network",
"diffusion", "latent diffusion", "flow-based model", "variational autoencoder", "VAE",
# AI Capabilities and Applications
"natural language processing", "NLP", "computer vision", "CV", "speech recognition",
"text generation", "image generation", "video generation", "multimodal", "multi-modal",
"recommendation system", "recommender system", "chatbot", "conversational AI",
"sentiment analysis", "entity recognition", "semantic search", "vector search", "embedding",
"classification", "regression", "clustering", "anomaly detection", "agent", "AI agent",
"autonomous agent", "agentic", "RAG", "retrieval augmented generation", "tool use",
"function calling", "reasoning", "chain-of-thought", "CoT", "tree-of-thought", "ToT",
"planning", "decision making", "multi-agent", "agent swarm", "multi-agent simulation",
# AI Technical Terms
"token", "tokenizer", "tokenization", "embedding", "vector", "prompt", "prompt engineering",
"context window", "parameter", "weights", "bias", "activation function", "loss function",
"gradient descent", "backpropagation", "epoch", "batch", "mini-batch", "regularization",
"dropout", "overfitting", "underfitting", "hyperparameter", "latent space", "latent variable",
"feature extraction", "dimensionality reduction", "optimization", "quantization", "pruning",
"fine-tuning", "transfer learning", "knowledge distillation", "int4", "int8", "bfloat16",
"float16", "mixed precision", "GPTQ", "AWQ", "GGUF", "GGML", "KV cache", "speculative decoding",
"beam search", "greedy decoding", "temperature", "top-k", "top-p", "nucleus sampling",
# AI Tools and Frameworks
"TensorFlow", "PyTorch", "JAX", "Keras", "Hugging Face", "Transformers", "Diffusers",
"LangChain", "Llama Index", "OpenAI", "Anthropic", "NVIDIA", "GPU", "TPU", "IPU", "NPU", "CUDA",
"MLOps", "model monitoring", "model deployment", "model serving", "inference endpoint",
"vLLM", "TGI", "text generation inference", "triton", "onnx", "tensorRT",
# AI Ethics and Concerns
"AI ethics", "responsible AI", "AI safety", "AI alignment", "AI governance",
"bias", "fairness", "interpretability", "explainability", "XAI", "transparency",
"hallucination", "toxicity", "safe deployment", "AI risk", "AI capabilities",
"alignment tax", "red teaming", "jailbreak", "prompt injection", "data poisoning",
# AI Companies and Organizations
"OpenAI", "Anthropic", "Google DeepMind", "Meta AI", "Microsoft", "NVIDIA",
"Hugging Face", "Mistral AI", "Cohere", "AI21 Labs", "Stability AI", "Midjourney",
"EleutherAI", "Allen AI", "DeepMind", "Character AI", "Inflection AI", "xAI"
],
"science": [
# General scientific terms
"study", "research", "scientist", "scientific", "discovered", "experiment",
"laboratory", "clinical", "trial", "hypothesis", "theory", "evidence-based",
"peer-reviewed", "journal", "publication", "finding", "breakthrough", "innovation",
"discovery", "analysis", "data", "measurement", "observation", "empirical",
# Biology and medicine
"biology", "chemistry", "physics", "genetics", "genomics", "DNA", "RNA",
"medicine", "gene", "protein", "molecule", "cell", "brain", "neuro",
"cancer", "disease", "cure", "treatment", "vaccine", "health", "medical",
"pharmaceutical", "drug", "therapy", "symptom", "diagnosis", "prognosis",
"patient", "doctor", "hospital", "clinic", "surgery", "immune", "antibody",
"virus", "bacteria", "pathogen", "infection", "epidemic", "pandemic",
"organism", "evolution", "mutation", "chromosome", "enzyme", "hormone",
# Physics and astronomy
"quantum", "particle", "atom", "nuclear", "electron", "neutron", "proton",
"atomic", "subatomic", "molecular", "energy", "matter", "mass", "force",
"space", "NASA", "telescope", "planet", "exoplanet", "moon", "lunar", "mars",
"star", "galaxy", "cosmic", "astronomical", "universe", "solar", "celestial",
"orbit", "gravitational", "gravity", "relativity", "quantum mechanics",
"string theory", "dark matter", "dark energy", "black hole", "supernova",
"radiation", "radioactive", "isotope", "fission", "fusion", "accelerator",
# Environmental science
"climate", "carbon", "environment", "ecosystem", "species", "extinct",
"endangered", "biodiversity", "conservation", "sustainable", "renewable",
"fossil fuel", "greenhouse", "global warming", "polar", "ice cap", "glacier",
"ozone", "atmosphere", "weather", "meteorology", "geology", "earthquake",
"volcanic", "ocean", "marine", "coral reef", "deforestation", "pollution",
# Math and computer science (non-AI specific)
"equation", "formula", "theorem", "calculus", "statistical", "probability",
"dataset", "parameter", "variable", "function", "matrix", "optimization",
# Organizations
"CERN", "NIH", "CDC", "WHO", "NOAA", "ESA", "SpaceX", "Blue Origin", "JPL",
"laboratory", "institute", "university", "academic", "faculty", "professor",
# Science tools
"Matlab", "SPSS", "SAS", "ImageJ", "LabVIEW", "ANSYS", "Cadence", "Origin",
"Avogadro", "ChemDraw", "Mathematica", "Wolfram Alpha", "COMSOL", "LAMMPS",
"VASP", "Gaussian", "GIS", "ArcGIS", "QGIS", "Maple", "R Studio"
],
"technology": [
# General tech terms
"computer", "software", "hardware", "internet", "cyber", "digital", "tech",
"robot", "automation", "autonomous", "code", "programming", "data", "cloud",
"server", "network", "encryption", "blockchain", "crypto", "bitcoin", "ethereum",
"technology", "innovation", "breakthrough", "prototype", "development",
"engineering", "technical", "specification", "feature", "functionality",
"interface", "system", "infrastructure", "integration", "implementation",
# Devices and hardware
"smartphone", "device", "gadget", "laptop", "desktop", "tablet", "wearable",
"smartwatch", "IoT", "internet of things", "sensor", "chip", "semiconductor",
"processor", "CPU", "GPU", "memory", "RAM", "storage", "hard drive", "SSD",
"electronic", "circuit", "motherboard", "component", "peripheral", "accessory",
"display", "screen", "touchscreen", "camera", "lens", "microphone", "speaker",
"battery", "charger", "wireless", "bluetooth", "WiFi", "router", "modem",
# Software and internet
"app", "application", "platform", "website", "online", "web", "browser",
"operating system", "Windows", "macOS", "Linux", "Android", "iOS", "software",
"program", "code", "coding", "development", "framework", "library", "API",
"interface", "backend", "frontend", "full-stack", "developer", "programmer",
"database", "SQL", "NoSQL", "cloud computing", "SaaS", "PaaS", "IaaS",
"DevOps", "agile", "scrum", "sprint", "version control", "git", "repository",
# Communications and networking
"5G", "6G", "broadband", "fiber", "network", "wireless", "cellular", "mobile",
"telecommunications", "telecom", "transmission", "bandwidth", "latency",
"protocol", "IP address", "DNS", "server", "hosting", "data center",
# Company and product names
"Apple", "Google", "Microsoft", "Amazon", "Facebook", "Meta", "Tesla",
"IBM", "Intel", "AMD", "Nvidia", "Qualcomm", "Cisco", "Oracle", "SAP",
"Huawei", "Samsung", "Sony", "LG", "Dell", "HP", "Lenovo", "Xiaomi",
"iPhone", "iPad", "MacBook", "Surface", "Galaxy", "Pixel", "Windows",
"Android", "iOS", "Chrome", "Firefox", "Edge", "Safari", "Office",
"Azure", "AWS", "Google Cloud", "Gmail", "Outlook", "Teams", "Zoom",
# Advanced technologies
"VR", "AR", "XR", "virtual reality", "augmented reality", "mixed reality",
"metaverse", "3D printing", "additive manufacturing", "quantum computing",
"nanotechnology", "biotechnology", "electric vehicle", "self-driving",
"autonomous vehicle", "drone", "UAV", "robotics", "cybersecurity",
# Social media
"social media", "social network", "Facebook", "Instagram", "Twitter", "X",
"LinkedIn", "TikTok", "Snapchat", "YouTube", "Pinterest", "Reddit",
"streaming", "content creator", "influencer", "follower", "like", "share",
"post", "tweet", "user-generated", "viral", "trending", "engagement",
# Technology tools
"NumPy", "Pandas", "Matplotlib", "Seaborn", "Scikit-learn", "Jupyter",
"Visual Studio", "VS Code", "IntelliJ", "PyCharm", "Eclipse", "Android Studio",
"Xcode", "Docker", "Kubernetes", "Jenkins", "Ansible", "Terraform", "Vagrant",
"AWS CLI", "Azure CLI", "GCP CLI", "PowerShell", "Bash", "npm", "pip", "conda",
"React", "Angular", "Vue.js", "Node.js", "Django", "Flask", "Spring", "Laravel",
"PostgreSQL", "MySQL", "MongoDB", "Redis", "Elasticsearch", "Kafka", "RabbitMQ",
# Optimization terms
"optimization", "efficiency", "performance tuning", "benchmarking", "profiling",
"refactoring", "scaling", "bottleneck", "throughput", "latency reduction",
"response time", "caching", "load balancing", "distributed computing",
"parallel processing", "concurrency", "asynchronous", "memory management"
],
"politics": [
# Government structure
"president", "prime minister", "government", "parliament", "congress",
"senate", "house", "representative", "minister", "secretary", "cabinet",
"administration", "mayor", "governor", "politician", "official", "authority",
"federal", "state", "local", "municipal", "county", "city", "town",
"constituency", "district", "precinct", "ward", "judiciary", "executive",
"legislative", "branch", "checks and balances", "separation of powers",
# Political activities
"policy", "election", "campaign", "vote", "voter", "ballot", "polling",
"political", "politics", "debate", "speech", "address", "press conference",
"approval rating", "opinion poll", "candidate", "incumbent", "challenger",
"primary", "caucus", "convention", "delegate", "nomination", "campaign trail",
"fundraising", "lobbying", "advocacy", "activism", "protest", "demonstration",
# Political ideologies
"democracy", "democratic", "republican", "conservative", "liberal",
"progressive", "left-wing", "right-wing", "centrist", "moderate",
"socialist", "capitalist", "communist", "libertarian", "populist",
"nationalist", "globalist", "isolationist", "hawk", "dove",
"ideology", "partisan", "bipartisan", "coalition", "majority", "minority",
# Laws and regulations
"bill", "law", "legislation", "regulation", "policy", "statute", "code",
"amendment", "reform", "repeal", "enact", "implement", "enforce",
"constitutional", "unconstitutional", "legal", "illegal", "legalize",
"criminalize", "deregulate", "regulatory", "compliance", "mandate",
# Judicial and legal
"court", "supreme", "justice", "judge", "ruling", "decision", "opinion",
"case", "lawsuit", "litigation", "plaintiff", "defendant", "prosecutor",
"attorney", "lawyer", "advocate", "judicial review", "precedent",
"constitution", "amendment", "rights", "civil rights", "human rights",
# International relations
"treaty", "international", "diplomatic", "diplomacy", "relations",
"foreign policy", "domestic policy", "UN", "NATO", "EU", "United Nations",
"sanctions", "embargo", "tariff", "trade war", "diplomat", "embassy",
"consulate", "ambassador", "delegation", "summit", "bilateral", "multilateral",
"alliance", "ally", "adversary", "geopolitical", "sovereignty", "regime",
# Security and defense
"national security", "homeland security", "defense", "military", "armed forces",
"army", "navy", "air force", "marines", "coast guard", "intelligence",
"CIA", "FBI", "NSA", "Pentagon", "war", "conflict", "peacekeeping",
"terrorism", "counterterrorism", "insurgency", "nuclear weapon", "missile",
"disarmament", "nonproliferation", "surveillance", "espionage",
# Political institutions
"White House", "Kremlin", "Downing Street", "Capitol Hill", "Westminster",
"United Nations", "European Union", "NATO", "World Bank", "IMF", "WTO",
"ASEAN", "African Union", "BRICS", "G7", "G20",
# Political parties and movements
"Democrat", "Republican", "Labour", "Conservative", "Green Party",
"Socialist", "Communist", "Libertarian", "Independent", "Tea Party",
"progressive movement", "civil rights movement", "womens rights",
"LGBTQ rights", "Black Lives Matter", "environmental movement"
],
"business": [
# Companies and organization types
"company", "corporation", "business", "startup", "firm", "enterprise",
"corporate", "industry", "sector", "conglomerate", "multinational",
"organization", "entity", "private", "public", "incorporated", "LLC",
"partnership", "proprietorship", "franchise", "subsidiary", "parent company",
"headquarters", "office", "facility", "plant", "factory", "warehouse",
"retail", "wholesale", "ecommerce", "brick-and-mortar", "chain", "outlet",
# Business roles and management
"executive", "CEO", "CFO", "CTO", "COO", "CMO", "CIO", "CHRO", "chief",
"director", "board", "chairman", "chairwoman", "chairperson", "president",
"vice president", "senior", "junior", "manager", "management", "supervisor",
"founder", "entrepreneur", "owner", "shareholder", "stakeholder",
"employee", "staff", "workforce", "personnel", "human resources", "HR",
"recruit", "hire", "layoff", "downsizing", "restructuring", "reorganization",
# Financial terms
"profit", "revenue", "sales", "income", "earnings", "EBITDA", "turnover",
"loss", "deficit", "expense", "cost", "overhead", "margin", "markup",
"budget", "forecast", "projection", "estimate", "actual", "variance",
"balance sheet", "income statement", "cash flow", "P&L", "liquidity",
"solvency", "asset", "liability", "equity", "debt", "leverage", "capital",
"working capital", "cash", "funds", "money", "payment", "transaction",
# Markets and trading
"market", "stock", "share", "bond", "security", "commodity", "futures",
"option", "derivative", "forex", "foreign exchange", "currency", "crypto",
"trader", "trading", "buy", "sell", "long", "short", "position", "portfolio",
"diversification", "hedge", "risk", "return", "yield", "dividend", "interest",
"bull market", "bear market", "correction", "crash", "rally", "volatile",
"volatility", "index", "benchmark", "Dow Jones", "NASDAQ", "S&P 500", "NYSE",
# Investment and funding
"investor", "investment", "fund", "mutual fund", "ETF", "hedge fund",
"private equity", "venture", "venture capital", "VC", "angel investor",
"seed", "Series A", "Series B", "Series C", "funding", "financing",
"loan", "credit", "debt", "equity", "fundraising", "crowdfunding",
"IPO", "initial public offering", "going public", "listed", "delisted",
"merger", "acquisition", "M&A", "takeover", "buyout", "divestiture",
"valuation", "billion", "million", "trillion", "unicorn", "decacorn",
# Economic terms
"economy", "economic", "economics", "macro", "micro", "fiscal", "monetary",
"supply", "demand", "market forces", "competition", "competitive", "monopoly",
"oligopoly", "antitrust", "regulation", "deregulation", "growth", "decline",
"recession", "depression", "recovery", "expansion", "contraction", "cycle",
"inflation", "deflation", "stagflation", "hyperinflation", "CPI", "price",
"GDP", "gross domestic product", "GNP", "productivity", "output", "input",
# Banking and finance
"finance", "financial", "bank", "banking", "commercial bank", "investment bank",
"central bank", "Federal Reserve", "Fed", "ECB", "Bank of England", "BOJ",
"interest rate", "prime rate", "discount rate", "basis point", "monetary policy",
"quantitative easing", "tightening", "loosening", "credit", "lending",
"borrowing", "loan", "mortgage", "consumer credit", "credit card", "debit card",
"checking", "savings", "deposit", "withdrawal", "ATM", "branch", "online banking",
# Currencies and payments
"dollar", "euro", "pound", "yen", "yuan", "rupee", "ruble", "real", "peso",
"currency", "money", "fiat", "exchange rate", "remittance", "transfer",
"payment", "transaction", "wire", "ACH", "SWIFT", "clearing", "settlement",
"cryptocurrency", "bitcoin", "ethereum", "blockchain", "fintech", "paytech",
# Business operations
"product", "service", "solution", "offering", "launch", "rollout", "release",
"operation", "production", "manufacturing", "supply chain", "logistics",
"procurement", "inventory", "distribution", "shipping", "delivery",
"quality", "control", "assurance", "standard", "certification", "compliance",
"process", "procedure", "workflow", "efficiency", "optimization",
# Marketing and sales
"marketing", "advertise", "advertising", "campaign", "promotion", "publicity",
"PR", "public relations", "brand", "branding", "identity", "image", "reputation",
"sales", "selling", "deal", "transaction", "pipeline", "lead", "prospect",
"customer", "client", "consumer", "buyer", "purchaser", "target market",
"segment", "demographic", "psychographic", "B2B", "B2C", "retail", "wholesale",
"price", "pricing", "discount", "premium", "luxury", "value", "bargain"
],
"world": [
# General international terms
"country", "nation", "state", "republic", "kingdom", "global", "international",
"foreign", "world", "worldwide", "domestic", "abroad", "overseas",
"developed", "developing", "industrialized", "emerging", "third world",
"global south", "global north", "east", "west", "western", "eastern",
"bilateral", "multilateral", "transnational", "multinational", "sovereignty",
# Regions and continents
"Europe", "European", "Asia", "Asian", "Africa", "African", "North America",
"South America", "Latin America", "Australia", "Oceania", "Antarctica",
"Middle East", "Central Asia", "Southeast Asia", "East Asia", "South Asia",
"Eastern Europe", "Western Europe", "Northern Europe", "Southern Europe",
"Mediterranean", "Scandinavia", "Nordic", "Baltic", "Balkans", "Caucasus",
"Caribbean", "Central America", "South Pacific", "Polynesia", "Micronesia",
# Major countries and regions
"China", "Chinese", "Russia", "Russian", "India", "Indian", "Japan", "Japanese",
"UK", "British", "England", "English", "Scotland", "Scottish", "Wales", "Welsh",
"Germany", "German", "France", "French", "Italy", "Italian", "Spain", "Spanish",
"Canada", "Canadian", "Brazil", "Brazilian", "Mexico", "Mexican", "Turkey", "Turkish",
"United States", "US", "USA", "American", "Britain", "Korea", "Korean",
"North Korea", "South Korea", "Saudi", "Saudi Arabia", "Saudi Arabian",
"Iran", "Iranian", "Iraq", "Iraqi", "Israel", "Israeli", "Palestine", "Palestinian",
"Egypt", "Egyptian", "Pakistan", "Pakistani", "Indonesia", "Indonesian",
"Australia", "Australian", "New Zealand", "Nigeria", "Nigerian", "South Africa",
"Argentina", "Argentinian", "Colombia", "Colombian", "Venezuela", "Venezuelan",
"Ukraine", "Ukrainian", "Poland", "Polish", "Switzerland", "Swiss",
"Netherlands", "Dutch", "Belgium", "Belgian", "Sweden", "Swedish", "Norway", "Norwegian",
# International issues and topics
"war", "conflict", "crisis", "tension", "dispute", "hostility", "peace",
"peacekeeping", "ceasefire", "truce", "armistice", "treaty", "agreement",
"compromise", "negotiation", "mediation", "resolution", "settlement",
"refugee", "migrant", "asylum seeker", "displacement", "humanitarian",
"border", "frontier", "territory", "territorial", "sovereignty", "jurisdiction",
"terror", "terrorism", "extremism", "radicalism", "insurgency", "militant",
"sanction", "embargo", "restriction", "isolation", "blockade",
# International trade and economy
"trade", "import", "export", "tariff", "duty", "quota", "subsidy",
"protectionism", "free trade", "fair trade", "globalization", "trade war",
"trade agreement", "trade deal", "trade deficit", "trade surplus",
"supply chain", "outsourcing", "offshoring", "reshoring", "nearshoring",
# Diplomacy and international relations
"embassy", "consulate", "diplomatic", "diplomacy", "diplomat", "ambassador",
"consul", "attaché", "envoy", "emissary", "delegation", "mission",
"foreign policy", "international relations", "geopolitics", "geopolitical",
"influence", "power", "superpower", "hegemony", "alliance", "coalition",
"bloc", "axis", "sphere of influence", "buffer state", "proxy",
# International organizations
"UN", "United Nations", "EU", "European Union", "NATO", "NAFTA", "USMCA",
"ASEAN", "OPEC", "Commonwealth", "Arab League", "African Union", "AU",
"BRICS", "G7", "G20", "IMF", "World Bank", "WTO", "WHO", "UNESCO",
"Security Council", "General Assembly", "International Court of Justice",
# Travel and cultural exchange
"visa", "passport", "immigration", "emigration", "migration", "travel",
"tourism", "tourist", "visitor", "foreigner", "expatriate", "expat",
"citizenship", "nationality", "dual citizen", "naturalization",
"cultural", "tradition", "heritage", "indigenous", "native", "local",
"language", "dialect", "translation", "interpreter", "cross-cultural"
],
"sports": [
# General sports terms
"game", "match", "tournament", "championship", "league", "cup", "Olympics",
"olympic", "world cup", "competition", "contest", "event", "series",
"sport", "sporting", "athletics", "physical", "play", "compete", "competition",
"amateur", "professional", "pro", "season", "preseason", "regular season",
"postseason", "playoff", "final", "semifinal", "quarterfinal", "qualifying",
# Team sports
"football", "soccer", "American football", "rugby", "basketball", "baseball",
"cricket", "hockey", "ice hockey", "field hockey", "volleyball", "handball",
"water polo", "lacrosse", "ultimate frisbee", "netball", "kabaddi",
"team", "club", "franchise", "squad", "roster", "lineup", "formation",
"player", "coach", "manager", "trainer", "captain", "starter", "substitute",
"bench", "draft", "trade", "free agent", "contract", "transfer", "loan",
# Individual sports
"tennis", "golf", "boxing", "wrestling", "martial arts", "MMA", "UFC",
"athletics", "track and field", "swimming", "diving", "gymnastics",
"skiing", "snowboarding", "skating", "figure skating", "speed skating",
"cycling", "mountain biking", "BMX", "motorsport", "F1", "Formula 1",
"NASCAR", "IndyCar", "MotoGP", "rally", "marathon", "triathlon", "decathlon",
"archery", "shooting", "fencing", "equestrian", "rowing", "canoeing", "kayaking",
"surfing", "skateboarding", "climbing", "bouldering", "weightlifting",
# Scoring and results
"score", "point", "goal", "touchdown", "basket", "run", "wicket", "try",
"win", "lose", "draw", "tie", "defeat", "victory", "champion", "winner",
"loser", "runner-up", "finalist", "semifinalist", "eliminated", "advance",
"qualify", "record", "personal best", "world record", "Olympic record",
"streak", "undefeated", "unbeaten", "perfect season", "comeback",
# Performance and training
"fitness", "training", "practice", "drill", "workout", "exercise", "regime",
"conditioning", "strength", "endurance", "speed", "agility", "flexibility",
"skill", "technique", "form", "style", "strategy", "tactic", "playbook",
"offense", "defense", "attack", "counter", "press", "formation",
"injury", "rehabilitation", "recovery", "physiotherapy", "sports medicine",
# Sports infrastructure
"stadium", "arena", "court", "field", "pitch", "rink", "pool", "track",
"course", "gymnasium", "gym", "complex", "venue", "facility", "locker room",
"dugout", "bench", "sideline", "grandstand", "spectator", "fan", "supporter",
# Sports organizations and competitions
"medal", "gold", "silver", "bronze", "podium", "Olympics", "Paralympic",
"commonwealth games", "Asian games", "Pan American games", "world championship",
"grand slam", "masters", "open", "invitational", "classic", "tour", "circuit",
"IPL", "Indian Premier League", "MLB", "Major League Baseball",
"NBA", "National Basketball Association", "NFL", "National Football League",
"NHL", "National Hockey League", "FIFA", "UEFA", "ATP", "WTA", "ICC",
"Premier League", "La Liga", "Bundesliga", "Serie A", "Ligue 1", "MLS",
"Champions League", "Europa League", "Super Bowl", "World Series", "Stanley Cup",
"NCAA", "collegiate", "college", "university", "varsity", "intramural",
# Sports media and business
"broadcast", "coverage", "commentator", "announcer", "pundit", "analyst",
"highlight", "replay", "sports network", "ESPN", "Sky Sports", "Fox Sports",
"sponsorship", "endorsement", "advertisement", "merchandise", "jersey", "kit",
"ticket", "season ticket", "box seat", "premium", "concession", "vendor",
# Sports media and business (continued)
"broadcast", "coverage", "commentator", "announcer", "pundit", "analyst",
"highlight", "replay", "sports network", "ESPN", "Sky Sports", "Fox Sports",
"sponsorship", "endorsement", "advertisement", "merchandise", "jersey", "kit",
"ticket", "season ticket", "box seat", "premium", "concession", "vendor"
],
"entertainment": [
# Film and cinema
"movie", "film", "cinema", "feature", "short film", "documentary", "animation",
"blockbuster", "indie", "independent film", "foreign film", "box office",
"screening", "premiere", "release", "theatrical", "stream", "streaming",
"director", "producer", "screenwriter", "script", "screenplay", "adaptation",
"cinematography", "cinematographer", "editing", "editor", "visual effects",
"special effects", "CGI", "motion capture", "sound design", "soundtrack",
"score", "composer", "scene", "shot", "take", "cut", "sequel", "prequel",
"trilogy", "franchise", "universe", "reboot", "remake", "spin-off",
"genre", "action", "comedy", "drama", "thriller", "horror", "sci-fi",
"science fiction", "fantasy", "romance", "romantic comedy", "rom-com",
"mystery", "crime", "western", "historical", "biographical", "biopic",
# Television
"TV", "television", "show", "series", "episode", "season", "pilot",
"finale", "midseason", "sitcom", "drama series", "miniseries", "limited series",
"anthology", "reality TV", "game show", "talk show", "variety show",
"network", "cable", "premium cable", "broadcast", "channel", "program",
"primetime", "daytime", "syndication", "rerun", "renewed", "cancelled",
"showrunner", "creator", "writer", "TV writer", "episode writer", "staff writer",
# Performing arts
"actor", "actress", "performer", "cast", "casting", "star", "co-star",
"supporting", "lead", "protagonist", "antagonist", "villain", "hero", "anti-hero",
"character", "role", "performance", "portrayal", "acting", "dialogue",
"monologue", "line", "script", "improv", "improvisation", "stand-up",
"comedian", "comic", "sketch", "theater", "theatre", "stage", "Broadway",
"West End", "play", "musical", "opera", "ballet", "dance", "choreography",
"production", "rehearsal", "audition", "understudy", "troupe", "ensemble",
# Music
"music", "song", "track", "single", "album", "EP", "LP", "record",
"release", "drop", "artist", "musician", "singer", "vocalist", "band",
"group", "duo", "trio", "soloist", "frontman", "frontwoman", "lead singer",
"songwriter", "composer", "producer", "DJ", "rapper", "MC", "beatmaker",
"guitarist", "bassist", "drummer", "pianist", "keyboardist", "violinist",
"instrumentalist", "orchestra", "symphony", "philharmonic", "conductor",
"genre", "rock", "pop", "hip-hop", "rap", "R&B", "soul", "funk", "jazz",
"blues", "country", "folk", "electronic", "EDM", "dance", "techno", "house",
"metal", "punk", "alternative", "indie", "classical", "reggae", "latin",
"hit", "chart", "Billboard", "Grammy", "award-winning", "platinum", "gold",
"concert", "tour", "gig", "show", "performance", "live", "venue", "arena",
"stadium", "festival", "Coachella", "Glastonbury", "Lollapalooza", "Bonnaroo",
# Celebrity culture
"celebrity", "star", "fame", "famous", "A-list", "B-list", "icon", "iconic",
"superstar", "public figure", "household name", "stardom", "limelight",
"popular", "popularity", "fan", "fanbase", "followers", "stan", "groupie",
"paparazzi", "tabloid", "gossip", "rumor", "scandal", "controversy",
"interview", "press conference", "red carpet", "premiere", "gala", "award show",
# Awards and recognition
"award", "nominee", "nomination", "winner", "recipient", "honor", "accolade",
"Oscar", "Academy Award", "Emmy", "Grammy", "Tony", "Golden Globe", "BAFTA",
"MTV Award", "People's Choice", "Critics' Choice", "SAG Award", "Billboard Award",
"best actor", "best actress", "best director", "best picture", "best film",
"best album", "best song", "hall of fame", "lifetime achievement", "legacy",
# Media and publishing
"book", "novel", "fiction", "non-fiction", "memoir", "biography", "autobiography",
"bestseller", "bestselling", "author", "writer", "novelist", "literary",
"literature", "publisher", "publishing", "imprint", "edition", "volume",
"chapter", "page", "paragraph", "prose", "narrative", "plot", "storyline",
"character", "protagonist", "antagonist", "setting", "theme", "genre",
"mystery", "thriller", "romance", "sci-fi", "fantasy", "young adult", "YA",
"comic", "comic book", "graphic novel", "manga", "anime", "cartoon",
# Digital entertainment
"streaming", "stream", "subscription", "platform", "service", "content",
"Netflix", "Disney+", "Amazon Prime", "Hulu", "HBO", "HBO Max", "Apple TV+",
"Peacock", "Paramount+", "YouTube", "YouTube Premium", "TikTok", "Instagram",
"influencer", "content creator", "vlogger", "blogger", "podcaster", "podcast",
"episode", "download", "subscriber", "follower", "like", "share", "viral",
"trending", "binge-watch", "marathon", "spoiler", "recap", "review", "trailer",
"teaser", "behind the scenes", "BTS", "exclusive", "original"
]
}
# Add domain-specific RSS feeds for different categories
CATEGORY_SPECIFIC_FEEDS = {
"science": [
# "https://www.science.org/rss/news_feeds/carousel.xml",
"https://www.science.org/rss/news_current.xml",
"https://www.nature.com/nature.rss",
# "https://www.scientificamerican.com/rss/",
"http://rss.sciam.com/basic-science",
# "https://rss.sciam.com/ScientificAmerican-Global",
"http://rss.sciam.com/ScientificAmerican-Global",
# "https://feeds.newscientist.com/science-news",
"https://www.newscientist.com/feed/home/?cmpid=RSS|NSNS-Home",
"https://phys.org/rss-feed/"
],
"technology": [
# "https://feed.wired.com/rss/category/business/feed.rss",
"https://www.wired.com/feed/category/business/latest/rss",
"https://techcrunch.com/feed/",
"https://www.technologyreview.com/feed/",
"https://arstechnica.com/feed/",
"https://www.theverge.com/rss/index.xml",
"https://news.ycombinator.com/rss"
],
"politics": [
"https://feeds.washingtonpost.com/rss/politics",
"https://rss.nytimes.com/services/xml/rss/nyt/Politics.xml",
"https://feeds.bbci.co.uk/news/politics/rss.xml",
"https://www.politico.com/rss/politicopicks.xml",
"https://www.realclearpolitics.com/index.xml"
],
"business": [
"https://www.ft.com/rss/home",
"https://feeds.bloomberg.com/markets/news.rss",
# "https://www.forbes.com/business/feed/",
"https://rss.nytimes.com/services/xml/rss/nyt/Business.xml",
"https://feeds.washingtonpost.com/rss/business",
"https://www.entrepreneur.com/latest.rss",
# "https://www.cnbc.com/id/10001147/device/rss/rss.htm",
"https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10001147",
"https://feeds.content.dowjones.io/public/rss/WSJcomUSBusiness",
"https://feeds.a.dj.com/rss/RSSMarketsMain.xml"
],
"world": [
"https://feeds.bbci.co.uk/news/world/rss.xml",
"https://rss.nytimes.com/services/xml/rss/nyt/World.xml",
"https://www.aljazeera.com/xml/rss/all.xml",
"https://feeds.washingtonpost.com/rss/world",
# "https://rss.cnn.com/rss/edition_world.rss"
"http://rss.cnn.com/rss/cnn_world.rss"
],
"sports": [
"https://www.espn.com/espn/rss/news",
"https://www.cbssports.com/rss/headlines/",
# "https://feeds.skysports.com/feeds/rss/latest.xml",
"https://www.espncricinfo.com/rss/content/story/feeds/0.xml",
"https://api.foxsports.com/v1/rss",
"https://www.sportingnews.com/us/rss",
"https://www.theguardian.com/sport/rss",
],
"entertainment": [
"https://www.hollywoodreporter.com/feed/",
"https://variety.com/feed/",
# "https://feeds.eonline.com/mrss/article/",
"https://www.eonline.com/syndication/feeds/rssfeeds/topstories.xml",
"https://www.rollingstone.com/feed/",
"https://rss.nytimes.com/services/xml/rss/nyt/Arts.xml"
],
"fact_checking": [
"https://www.snopes.com/feed/",
"https://www.politifact.com/rss/all/",
"https://www.factcheck.org/feed/",
"https://leadstories.com/atom.xml",
# "https://apnews.com/hub/fact-check/rss",
# "https://apnews.com/apf-fact-check"
"https://fullfact.org/feed/all/",
"https://www.truthorfiction.com/feed/"
]
}
# Reliability boosts for sources by category
SOURCE_RELIABILITY_BY_CATEGORY = {
"science": {
"nature.com": 0.95,
"science.org": 0.95,
"nih.gov": 0.95,
"nasa.gov": 0.95,
"scientificamerican.com": 0.9,
"newscientist.com": 0.9,
"pnas.org": 0.95,
"cell.com": 0.95,
"sciencedirect.com": 0.9,
"plos.org": 0.9,
"arxiv.org": 0.85
},
"technology": {
"wired.com": 0.9,
"techcrunch.com": 0.85,
"arstechnica.com": 0.9,
"technologyreview.com": 0.9,
"theverge.com": 0.85,
"cnet.com": 0.85,
"engadget.com": 0.85
},
"fact_checking": {
"snopes.com": 0.95,
"politifact.com": 0.9,
"factcheck.org": 0.9,
"apnews.com/hub/fact-check": 0.95,
"reuters.com/fact-check": 0.95
}
}
def detect_claim_category(claim: str) -> Tuple[str, float]:
"""
Detect the most likely category of a claim and its confidence score
Args:
claim (str): The claim text
Returns:
tuple: (category_name, confidence_score)
"""
if not claim:
return "general", 0.3
# Lowercase for better matching
claim_lower = claim.lower()
# Count matches for each category
category_scores = {}
for category, keywords in CLAIM_CATEGORIES.items():
# Count how many keywords from this category appear in the claim
matches = sum(1 for keyword in keywords if keyword.lower() in claim_lower)
# Calculate a simple score based on matches
if matches > 0:
# Calculate a more significant score based on number of matches
score = min(0.9, 0.3 + (matches * 0.1)) # Base 0.3 + 0.1 per match, max 0.9
category_scores[category] = score
# Find category with highest score
if not category_scores:
return "general", 0.3
top_category = max(category_scores.items(), key=lambda x: x[1])
category_name, confidence = top_category
# If the top score is too low, return general
if confidence < 0.3:
return "general", 0.3
return category_name, confidence
def get_topic_specific_sources(claim: str, existing_sources: Dict) -> Dict:
"""
Enrich existing sources dict with topic-specific sources
Args:
claim (str): The claim text
existing_sources (dict): Current sources configuration
Returns:
dict: Updated sources with topic-specific priorities
"""
# Detect claim category
category, confidence = detect_claim_category(claim)
logger.info(f"Claim category detected: {category} (confidence: {confidence:.2f})")
# If confidence is low, keep existing sources
if confidence < 0.4:
return existing_sources
# Get specific feeds for the category
category_feeds = CATEGORY_SPECIFIC_FEEDS.get(category, [])
# Only proceed if we have category-specific feeds
if not category_feeds:
return existing_sources
# Create a new sources dictionary with category-specific modifications
updated_sources = existing_sources.copy()
# If the category is science, add the category-specific feeds to the list
# and prioritize them by putting them first in RSS feeds
if category in CATEGORY_SPECIFIC_FEEDS:
# Add up to 5 category-specific RSS feeds (if we have them)
category_feeds_sample = category_feeds[:min(5, len(category_feeds))]
# Add or update source reliability data
if category in SOURCE_RELIABILITY_BY_CATEGORY:
for domain, reliability in SOURCE_RELIABILITY_BY_CATEGORY[category].items():
updated_sources["source_credibility"] = updated_sources.get("source_credibility", {})
updated_sources["source_credibility"][domain] = reliability
# Return updated sources with prioritized feeds
return {
"category": category,
"confidence": confidence,
"rss_feeds": category_feeds_sample + (updated_sources.get("rss_feeds", []) or []),
"source_credibility": updated_sources.get("source_credibility", {})
}
return existing_sources
def get_prioritized_sources(claim: str, claim_category: Optional[str] = None) -> Dict[str, List[str]]:
"""
Get prioritized sources for a claim based on its category
Args:
claim (str): The claim to check
claim_category (str, optional): Override detected category
Returns:
dict: Dictionary with source types prioritized by relevance
"""
# Detect category if not provided
if not claim_category:
category, confidence = detect_claim_category(claim)
else:
category = claim_category
confidence = 0.8 # Assume high confidence if category is explicitly provided
# Log detected category
logger.info(f"Using claim category: {category} for source prioritization")
# Default priorities
priorities = {
"primary": ["wikipedia", "news", "claimreview"],
"secondary": ["rss", "scholarly", "wikidata"]
}
# Needs recent evidence check (existing logic)
temporal_terms = ["is", "are", "remains", "continues", "still", "currently",
"now", "today", "recent", "latest"]
negation_terms = ["not", "no longer", "isn't", "aren't", "doesn't", "don't",
"can't", "cannot", "anymore"]
requires_recent = any(term in claim.lower() for term in temporal_terms) or \
any(term in claim.lower() for term in negation_terms)
# Adjust priorities based on category
if category == "science":
if requires_recent:
priorities = {
"primary": ["scholarly", "rss", "wikipedia"],
"secondary": ["news", "claimreview", "wikidata"]
}
else:
priorities = {
"primary": ["scholarly", "wikipedia", "rss"],
"secondary": ["claimreview", "news", "wikidata"]
}
elif category == "technology":
if requires_recent:
priorities = {
"primary": ["rss", "news", "scholarly"],
"secondary": ["wikipedia", "claimreview", "wikidata"]
}
else:
priorities = {
"primary": ["news", "scholarly", "wikipedia"],
"secondary": ["rss", "claimreview", "wikidata"]
}
elif category == "politics":
if requires_recent:
priorities = {
"primary": ["rss", "news", "claimreview"],
"secondary": ["wikipedia", "wikidata", "scholarly"]
}
else:
priorities = {
"primary": ["claimreview", "news", "wikipedia"],
"secondary": ["rss", "wikidata", "scholarly"]
}
elif category == "business" or category == "world":
if requires_recent:
priorities = {
"primary": ["rss", "news", "wikipedia"],
"secondary": ["claimreview", "wikidata", "scholarly"]
}
else:
priorities = {
"primary": ["news", "wikipedia", "rss"],
"secondary": ["claimreview", "wikidata", "scholarly"]
}
elif category == "sports":
if requires_recent:
priorities = {
"primary": ["rss", "news", "wikipedia"],
"secondary": ["wikidata", "claimreview", "scholarly"]
}
else:
priorities = {
"primary": ["wikipedia", "news", "rss"],
"secondary": ["wikidata", "claimreview", "scholarly"]
}
elif category == "entertainment":
if requires_recent:
priorities = {
"primary": ["rss", "news", "claimreview"],
"secondary": ["wikipedia", "wikidata", "scholarly"]
}
else:
priorities = {
"primary": ["news", "wikipedia", "claimreview"],
"secondary": ["rss", "wikidata", "scholarly"]
}
# Add category and confidence for reference
priorities["category"] = category
priorities["confidence"] = confidence
priorities["requires_recent"] = requires_recent
return priorities
def get_category_specific_rss_feeds(category: str, max_feeds: int = 5) -> List[str]:
"""
Get a list of RSS feeds specific to a category
Args:
category (str): The claim category
max_feeds (int): Maximum number of feeds to return
Returns:
list: List of RSS feed URLs
"""
# Get category-specific feeds
category_feeds = CATEGORY_SPECIFIC_FEEDS.get(category, [])
# Limit to max_feeds
return category_feeds[:min(max_feeds, len(category_feeds))] |