Spaces:
Runtime error
Runtime error
upload 8 files
Browse files- Scaler_crop.joblib +3 -0
- Scaler_fertilizer.pkl +3 -0
- app.py +92 -0
- knn_fertilizer.joblib +3 -0
- knn_fertilizer.pkl +3 -0
- requirements.txt +5 -0
- rf_crop.joblib +3 -0
- rf_crop.pkl +3 -0
Scaler_crop.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:421c25c8a307331cd9843155b0aea25cac383492085e69ef32cb0487a7b35452
|
3 |
+
size 1143
|
Scaler_fertilizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11df3de14dfd37178a51213783f0011457e566834292a71dcc60dd86386a7da7
|
3 |
+
size 746
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the trained models
|
6 |
+
with open('rf_crop.pkl', 'rb') as file:
|
7 |
+
crop_model = joblib.load(file)
|
8 |
+
|
9 |
+
with open('knn_fertilizer.pkl', 'rb') as file:
|
10 |
+
fertilizer_model = joblib.load(file)
|
11 |
+
|
12 |
+
with open('Scaler_fertilizer.pkl', 'rb') as file: # Assuming you saved the scaler during model training
|
13 |
+
scaler = joblib.load(file)
|
14 |
+
|
15 |
+
# Label Encoders for the models
|
16 |
+
crop_label_encoder = {
|
17 |
+
0: "Sugarcane", 1: "Wheat", 2: "Cotton", 3: "Jowar", 4: "Rice",
|
18 |
+
5: "Maize", 6: "Groundnut", 7: "Grapes", 8: "Tur", 9: "Ginger",
|
19 |
+
10: "Turmeric", 11: "Urad", 12: "Gram", 13: "Moong", 14: "Soybean", 15: "Masoor"
|
20 |
+
}
|
21 |
+
|
22 |
+
fertilizer_label_encoder = {
|
23 |
+
0: "Urea", 1: "DAP", 2: "MOP", 3: "SSP", 4: "19:19:19 NPK",
|
24 |
+
5: "Chilated Micronutrient", 6: "50:26:26 NPK", 7: "Magnesium Sulphate",
|
25 |
+
8: "10:26:26 NPK", 9: "Ferrous Sulphate", 10: "13:32:26 NPK",
|
26 |
+
11: "10:10:10 NPK", 12: "Ammonium Sulphate", 13: "12:32:16 NPK",
|
27 |
+
14: "White Potash", 15: "Hydrated Lime", 16: "20:20:20 NPK",
|
28 |
+
17: "18:46:00 NPK", 18: "Sulphur"
|
29 |
+
}
|
30 |
+
|
31 |
+
# Prediction functions
|
32 |
+
def predict_crop(Nitrogen, Phosphorus, Potassium, pH, Rainfall, Temperature):
|
33 |
+
# Prepare the input data and scale it
|
34 |
+
crop_input = np.array([[Nitrogen, Phosphorus, Potassium, pH, Rainfall, Temperature]])
|
35 |
+
crop_input_scaled = scaler.transform(crop_input)
|
36 |
+
|
37 |
+
# Predict the crop
|
38 |
+
crop_prediction = crop_model.predict(crop_input_scaled)
|
39 |
+
return crop_prediction[0]
|
40 |
+
|
41 |
+
def predict_fertilizer(Nitrogen, Phosphorus, Potassium, pH, Rainfall, Temperature, Crop):
|
42 |
+
# Prepare the input data and scale it
|
43 |
+
crop_index = list(crop_label_encoder.keys())[list(crop_label_encoder.values()).index(Crop)]
|
44 |
+
fertilizer_input = np.array([[Nitrogen, Phosphorus, Potassium, pH, Rainfall, Temperature, crop_index]])
|
45 |
+
fertilizer_input_scaled = scaler.transform(fertilizer_input[:, :-1])
|
46 |
+
|
47 |
+
# Add crop index back to the scaled input
|
48 |
+
fertilizer_input_scaled = np.hstack([fertilizer_input_scaled, [[crop_index]]])
|
49 |
+
|
50 |
+
# Predict the fertilizer
|
51 |
+
fertilizer_prediction = fertilizer_model.predict(fertilizer_input_scaled)
|
52 |
+
|
53 |
+
return fertilizer_label_encoder[int(fertilizer_prediction[0])]
|
54 |
+
|
55 |
+
# Gradio Interface for Crop Prediction
|
56 |
+
crop_interface = gr.Interface(
|
57 |
+
fn=predict_crop,
|
58 |
+
inputs=[
|
59 |
+
gr.Number(label="Nitrogen"),
|
60 |
+
gr.Number(label="Phosphorus"),
|
61 |
+
gr.Number(label="Potassium"),
|
62 |
+
gr.Number(label="pH"),
|
63 |
+
gr.Number(label="Rainfall"),
|
64 |
+
gr.Number(label="Temperature")
|
65 |
+
],
|
66 |
+
outputs=gr.Label(num_top_classes=1),
|
67 |
+
title="Crop Prediction",
|
68 |
+
allow_flagging='never'
|
69 |
+
)
|
70 |
+
|
71 |
+
# Gradio Interface for Fertilizer Prediction
|
72 |
+
fertilizer_interface = gr.Interface(
|
73 |
+
fn=predict_fertilizer,
|
74 |
+
inputs=[
|
75 |
+
gr.Number(label="Nitrogen"),
|
76 |
+
gr.Number(label="Phosphorus"),
|
77 |
+
gr.Number(label="Potassium"),
|
78 |
+
gr.Number(label="pH"),
|
79 |
+
gr.Number(label="Rainfall"),
|
80 |
+
gr.Number(label="Temperature"),
|
81 |
+
gr.Dropdown(label="Crop", choices=list(crop_label_encoder.values()))
|
82 |
+
],
|
83 |
+
outputs=gr.Label(num_top_classes=1),
|
84 |
+
title="Fertilizer Prediction",
|
85 |
+
allow_flagging='never'
|
86 |
+
)
|
87 |
+
|
88 |
+
# Create a Tabbed Interface in Gradio
|
89 |
+
app = gr.TabbedInterface([crop_interface, fertilizer_interface], ["Crop Prediction", "Fertilizer Prediction"])
|
90 |
+
|
91 |
+
# Launch the app
|
92 |
+
app.launch()
|
knn_fertilizer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb9c518848083cc38347f02e7be0b665749445ff99e4504cb7e033c2b4fbc902
|
3 |
+
size 924918
|
knn_fertilizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90e2189b4191bfeea2584aec716f00cc1640478fe9ac0f7f414594cf0bad0e8d
|
3 |
+
size 536649
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
scikit-learn==1.3.0
|
3 |
+
numpy
|
4 |
+
joblib
|
5 |
+
pickle
|
rf_crop.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9185c92b9252cd95d0344849adc49aacfc8ede4ebab519876cf535b85821a458
|
3 |
+
size 17618617
|
rf_crop.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea83bb405aab3c292238bda4b7a5def1bf56750e47bdecec88e0902a92fc70f8
|
3 |
+
size 17611231
|