File size: 8,491 Bytes
db17bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from src.data_processing.loader import MultiFormatDocumentLoader
from src.data_processing.chunker import SDPMChunker, BGEM3Embeddings

import pandas as pd
from typing import List, Dict, Any
from pinecone import Pinecone, ServerlessSpec
import time
from tqdm import tqdm
from dotenv import load_dotenv
import os


load_dotenv()

# API Keys
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')

embedding_model = BGEM3Embeddings(model_name="BAAI/bge-m3")


def load_documents(file_paths: List[str], output_path='./data/output.md'):
    """
    Load documents from multiple sources and combine them into a single markdown file
    """
    loader = MultiFormatDocumentLoader(
        file_paths=file_paths,
        enable_ocr=False,
        enable_tables=True
    )
    
    # Append all documents to the markdown file
    with open(output_path, 'w') as f:
        for doc in loader.lazy_load():
            # Add metadata as YAML frontmatter
            f.write('---\n')
            for key, value in doc.metadata.items():
                f.write(f'{key}: {value}\n')
            f.write('---\n\n')
            f.write(doc.page_content)
            f.write('\n\n')
    
    return output_path

def process_chunks(markdown_path: str, chunk_size: int = 256, 
                  threshold: float = 0.7, skip_window: int = 2):
    """
    Process the markdown file into chunks and prepare for vector storage
    """
    chunker = SDPMChunker(
        embedding_model=embedding_model,
        chunk_size=chunk_size,
        threshold=threshold,
        skip_window=skip_window
    )
    
    # Read the markdown file
    with open(markdown_path, 'r') as file:
        text = file.read()
    
    # Generate chunks
    chunks = chunker.chunk(text)
    
    # Prepare data for Parquet
    processed_chunks = []
    for chunk in chunks:
        
        processed_chunks.append({
            'text': chunk.text,
            'token_count': chunk.token_count,
            'start_index': chunk.start_index,
            'end_index': chunk.end_index,
            'num_sentences': len(chunk.sentences),
        })
    
    return processed_chunks

def save_to_parquet(chunks: List[Dict[str, Any]], output_path='./data/chunks.parquet'):
    """
    Save processed chunks to a Parquet file
    """
    df = pd.DataFrame(chunks)
    print(f"Saving to Parquet: {output_path}")
    df.to_parquet(output_path)
    print(f"Saved to Parquet: {output_path}")
    return output_path


class PineconeRetriever:
    def __init__(
        self,
        pinecone_client: Pinecone,
        index_name: str,
        namespace: str,
        embedding_generator: BGEM3Embeddings
    ):
        """Initialize the retriever with Pinecone client and embedding generator.
        
        Args:
            pinecone_client: Initialized Pinecone client
            index_name: Name of the Pinecone index
            namespace: Namespace in the index
            embedding_generator: BGEM3Embeddings instance
        """
        self.pinecone = pinecone_client
        self.index = self.pinecone.Index(index_name)
        self.namespace = namespace
        self.embedding_generator = embedding_generator
    
    def invoke(self, question: str, top_k: int = 5):
        """Retrieve similar documents for a question.
        
        Args:
            question: Query string
            top_k: Number of results to return
            
        Returns:
            List of dictionaries containing retrieved documents
        """
        # Generate embedding for the question
        question_embedding = self.embedding_generator.embed(question)
        question_embedding = question_embedding.tolist()
        # Query Pinecone
        results = self.index.query(
            namespace=self.namespace,
            vector=question_embedding,
            top_k=top_k,
            include_values=False,
            include_metadata=True
        )
        
        # Format results
        retrieved_docs = [
            {"page_content": match.metadata["text"], "score": match.score} 
            for match in results.matches
        ]
        
        return retrieved_docs

def ingest_data(
    pc,
    parquet_path: str,
    text_column: str,
    pinecone_client: Pinecone,
    index_name= "vector-index",
    namespace= "rag",
    batch_size: int = 100
):
    """Ingest data from a Parquet file into Pinecone.
    
    Args:
        parquet_path: Path to the Parquet file
        text_column: Name of the column containing text data
        pinecone_client: Initialized Pinecone client
        index_name: Name of the Pinecone index
        namespace: Namespace in the index
        batch_size: Batch size for processing
    """
    # Read Parquet file
    print(f"Reading Parquet file: {parquet_path}")
    df = pd.read_parquet(parquet_path)
    print(f"Total records: {len(df)}")
    # Create or get index
    if not pinecone_client.has_index(index_name):
        pinecone_client.create_index(
            name=index_name,
            dimension=1024,  # BGE-M3 dimension
            metric="cosine",
            spec=ServerlessSpec(
                cloud='aws',
                region='us-east-1'
            )
        )
        
        # Wait for index to be ready
        while not pinecone_client.describe_index(index_name).status['ready']:
            time.sleep(1)
    
    index = pinecone_client.Index(index_name)
    
    # Process in batches
    for i in tqdm(range(0, len(df), batch_size)):
        batch_df = df.iloc[i:i+batch_size]
        
        # Generate embeddings for batch
        texts = batch_df[text_column].tolist()
        embeddings = embedding_model.embed_batch(texts)
        print(f"embeddings for batch: {i}")
        # Prepare records for upsert
        records = []
        for idx, (_, row) in enumerate(batch_df.iterrows()):
            records.append({
                "id": str(row.name),  # Using DataFrame index as ID
                "values": embeddings[idx],
                "metadata": {"text": row[text_column]}
            })
        
        # Upsert to Pinecone
        index.upsert(vectors=records, namespace=namespace)
        
        # Small delay to handle rate limits
        time.sleep(0.5)

def get_retriever(
    pinecone_client: Pinecone,
    index_name= "vector-index",
    namespace= "rag"
):
    """Create and return a PineconeRetriever instance.
    
    Args:
        pinecone_client: Initialized Pinecone client
        index_name: Name of the Pinecone index
        namespace: Namespace in the index
        
    Returns:
        Configured PineconeRetriever instance
    """
    return PineconeRetriever(
        pinecone_client=pinecone_client,
        index_name=index_name,
        namespace=namespace,
        embedding_generator=embedding_model
    )
    
def main():
    # Initialize Pinecone client
    pc = Pinecone(api_key=PINECONE_API_KEY)
    
    # Define input files
    file_paths=[
        # './data/2404.19756v1.pdf',
        # './data/OD429347375590223100.pdf',
        # './data/Project Report Format.docx',
        './data/UNIT 2 GENDER BASED VIOLENCE.pptx'
    ]

    # Process pipeline
    try:
        # Step 1: Load and combine documents
        # print("Loading documents...")
        # markdown_path = load_documents(file_paths)
        
        # # Step 2: Process into chunks with embeddings
        # print("Processing chunks...")
        # chunks = process_chunks(markdown_path)
        
        # # Step 3: Save to Parquet
        # print("Saving to Parquet...")
        # parquet_path = save_to_parquet(chunks)
        
        # # Step 4: Ingest into Pinecone
        # print("Ingesting into Pinecone...")
        # ingest_data(
            # pc,
        #     parquet_path=parquet_path,
        #     text_column="text",
        #     pinecone_client=pc,
        # )
        
        # Step 5: Test retrieval
        print("\nTesting retrieval...")
        retriever = get_retriever(
            pinecone_client=pc,
            index_name="vector-index",
            namespace="rag"
        )
        
        results = retriever.invoke(
            question="describe the gender based violence",
            top_k=5
        )
        
        for i, doc in enumerate(results, 1):
            print(f"\nResult {i}:")
            print(f"Content: {doc['page_content']}...")
            print(f"Score: {doc['score']}")
            
    except Exception as e:
        print(f"Error in pipeline: {str(e)}")

if __name__ == "__main__":
    main()