File size: 8,998 Bytes
db17bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from langgraph.graph import END, StateGraph, START
from langchain_core.prompts import PromptTemplate
from src.agents.state import GraphState
# from agents.router import route_query
import asyncio
from src.vectorstore.pinecone_db import get_retriever
from src.tools.web_search import AdvancedWebCrawler
from src.llm.graders import (
grade_document_relevance,
check_hallucination,
grade_answer_quality
)
from langchain_core.output_parsers import StrOutputParser
from src.llm.query_rewriter import rewrite_query
from langchain_ollama import ChatOllama
def perform_web_search(question: str):
"""
Perform web search using the AdvancedWebCrawler.
Args:
question (str): User's input question
Returns:
List: Web search results
"""
# Initialize web crawler
crawler = AdvancedWebCrawler(
max_search_results=5,
word_count_threshold=50,
content_filter_type='f',
filter_threshold=0.48
)
results = asyncio.run(crawler.search_and_crawl(question))
return results
def create_adaptive_rag_workflow(retriever, llm, top_k=5, enable_websearch=False):
"""
Create the adaptive RAG workflow graph.
Args:
retriever: Vector store retriever
Returns:
Compiled LangGraph workflow
"""
def retrieve(state: GraphState):
"""Retrieve documents from vectorstore."""
print("---RETRIEVE---")
question = state['question']
documents = retriever.invoke(question, top_k)
print(f"Retrieved {len(documents)} documents.")
print(documents)
return {"documents": documents, "question": question}
def route_to_datasource(state: GraphState):
"""Route question to web search or vectorstore."""
print("---ROUTE QUESTION---")
# question = state['question']
# source = route_query(question)
if enable_websearch:
print("---ROUTE TO WEB SEARCH---")
return "web_search"
else:
print("---ROUTE TO RAG---")
return "vectorstore"
def generate_answer(state: GraphState):
"""Generate answer using retrieved documents."""
print("---GENERATE---")
question = state['question']
documents = state['documents']
# Prepare context
context = "\n\n".join([doc["page_content"] for doc in documents])
prompt_template = PromptTemplate.from_template("""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:""")
# Generate answer
rag_chain = prompt_template | llm | StrOutputParser()
generation = rag_chain.invoke({"context": context, "question": question})
return {"generation": generation, "documents": documents, "question": question}
def grade_documents(state: GraphState):
"""Filter relevant documents."""
print("---GRADE DOCUMENTS---")
question = state['question']
documents = state['documents']
# Filter documents
filtered_docs = []
for doc in documents:
score = grade_document_relevance(question, doc["page_content"], llm)
if score == "yes":
filtered_docs.append(doc)
return {"documents": filtered_docs, "question": question}
def web_search(state: GraphState):
"""Perform web search."""
print("---WEB SEARCH---")
question = state['question']
# Perform web search
results = perform_web_search(question)
web_documents = [
{
"page_content": result['content'],
"metadata": {"source": result['url']}
} for result in results
]
return {"documents": web_documents, "question": question}
def check_generation_quality(state: GraphState):
"""Check the quality of generated answer."""
print("---ASSESS GENERATION---")
question = state['question']
documents = state['documents']
generation = state['generation']
print("---Generation is not hallucinated.---")
# Check answer quality
quality_score = grade_answer_quality(question, generation, llm)
if quality_score == "yes":
print("---Answer quality is good.---")
else:
print("---Answer quality is poor.---")
return "end" if quality_score == "yes" else "rewrite"
# Create workflow
workflow = StateGraph(GraphState)
# Add nodes
workflow.add_node("vectorstore", retrieve)
workflow.add_node("web_search", web_search)
workflow.add_node("grade_documents", grade_documents)
workflow.add_node("generate", generate_answer)
workflow.add_node("rewrite_query", lambda state: {
"question": rewrite_query(state['question'], llm),
"documents": [],
"generation": None
})
# Define edges
workflow.add_conditional_edges(
START,
route_to_datasource,
{
"web_search": "web_search",
"vectorstore": "vectorstore"
}
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("vectorstore", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
lambda state: "generate" if state['documents'] else "rewrite_query"
)
workflow.add_edge("rewrite_query", "vectorstore")
workflow.add_conditional_edges(
"generate",
check_generation_quality,
{
"end": END,
"regenerate": "generate",
"rewrite": "rewrite_query"
}
)
# Compile the workflow
app = workflow.compile()
return app
def run_adaptive_rag(retriever, question: str, llm, top_k=5, enable_websearch=False):
"""
Run the adaptive RAG workflow for a given question.
Args:
retriever: Vector store retriever
question (str): User's input question
Returns:
str: Generated answer
"""
# Create workflow
workflow = create_adaptive_rag_workflow(retriever, llm, top_k, enable_websearch=enable_websearch)
# Run workflow
final_state = None
for output in workflow.stream({"question": question}, config={"recursion_limit": 5}):
for key, value in output.items():
print(f"Node '{key}':")
# Optionally print state details
# print(value)
final_state = value
return final_state.get('generation', 'No answer could be generated.')
if __name__ == "__main__":
# Example usage
from vectorstore.pinecone_db import PINECONE_API_KEY, ingest_data, get_retriever, load_documents, process_chunks, save_to_parquet
from pinecone import Pinecone
# Load and prepare documents
pc = Pinecone(api_key=PINECONE_API_KEY)
# Define input files
file_paths=[
# './data/2404.19756v1.pdf',
# './data/OD429347375590223100.pdf',
# './data/Project Report Format.docx',
'./data/UNIT 2 GENDER BASED VIOLENCE.pptx'
]
# Process pipeline
try:
# Step 1: Load and combine documents
print("Loading documents...")
markdown_path = load_documents(file_paths)
# Step 2: Process into chunks with embeddings
print("Processing chunks...")
chunks = process_chunks(markdown_path)
# Step 3: Save to Parquet
print("Saving to Parquet...")
parquet_path = save_to_parquet(chunks)
# Step 4: Ingest into Pinecone
print("Ingesting into Pinecone...")
ingest_data(pc,
parquet_path=parquet_path,
text_column="text",
pinecone_client=pc,
)
# Step 5: Test retrieval
print("\nTesting retrieval...")
retriever = get_retriever(
pinecone_client=pc,
index_name="vector-index",
namespace="rag"
)
except Exception as e:
print(f"Error in pipeline: {str(e)}")
llm = ChatOllama(model = "llama3.2", temperature = 0.1, num_predict = 256, top_p=0.5)
# Test questions
test_questions = [
# "What are the key components of AI agent memory?",
# "Explain prompt engineering techniques",
# "What are recent advancements in adversarial attacks on LLMs?"
"what are the trending papers that are published in NeurIPS 2024?"
]
# Run workflow for each test question
for question in test_questions:
print(f"\n--- Processing Question: {question} ---")
answer = run_adaptive_rag(retriever, question, llm)
print("\nFinal Answer:", answer) |