File size: 17,128 Bytes
db17bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
from langgraph.graph import END, StateGraph, START
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
import re
import asyncio
from typing import TypedDict, List, Optional, Dict
from src.tools.deep_crawler import DeepWebCrawler, ResourceCollectionAgent
class ResearchGraphState(TypedDict):
company: str
industry: str
research_results: Optional[dict]
use_cases: Optional[str]
search_queries: Optional[Dict[str, List[str]]]
resources: Optional[List[dict]]
final_report: Optional[str]
def clean_text(text):
"""
Cleans the given text by:
1. Removing all hyperlinks.
2. Removing unnecessary parentheses and square brackets.
Args:
text (str): The input text to be cleaned.
Returns:
str: The cleaned text with hyperlinks, parentheses, and square brackets removed.
"""
# Regular expression pattern for matching URLs
url_pattern = r'https?://\S+|www\.\S+'
# Remove hyperlinks
text_without_links = re.sub(url_pattern, '', text)
# Regular expression pattern for matching parentheses and square brackets
brackets_pattern = r'[\[\]\(\)]'
# Remove unnecessary brackets
cleaned_text = re.sub(brackets_pattern, '', text_without_links)
return cleaned_text.strip()
def create_industry_research_workflow(llm):
async def industry_research(state: ResearchGraphState):
"""Research industry and company using DeepWebCrawler."""
company = state['company']
industry = state['industry']
queries = [
f"{company} company profile services",
]
crawler = DeepWebCrawler(
max_search_results=3,
max_external_links=1,
word_count_threshold=100,
content_filter_type='bm25',
filter_threshold=0.48
)
all_results = []
for query in queries:
results = await crawler.search_and_crawl(query)
all_results.extend(results)
print(all_results)
combined_content = "\n\n".join([
f"Title: {clean_text(r['title'])} \n{clean_text(r['content'])}"
for r in all_results if r['success']
])
print("Combined Content: ", combined_content)
prompt = PromptTemplate.from_template(
"""Analyze this research about {company} in the {industry} industry:
{content}
Provide a comprehensive overview including:
1. Company Overview
2. Market Segments
3. Products and Services
4. Strategic Focus Areas
5. Industry Trends
6. Competitive Position
Format the analysis in clear sections with headers."""
)
chain = prompt | llm | StrOutputParser()
analysis = chain.invoke({
"company": company,
"industry": industry,
"content": combined_content
})
print("Analysis: ", analysis)
return {
"research_results": {
"analysis": analysis,
"raw_content": combined_content
}
}
def generate_use_cases_and_queries(state: ResearchGraphState):
"""Generate AI/ML use cases and extract relevant search queries."""
research_data = state['research_results']
company = state['company']
industry = state['industry']
# First generate use cases
use_case_prompt = PromptTemplate.from_template(
"""Based on this research:
Analysis: {analysis}
Raw Research: {raw_content}
Generate innovative use cases where {company} in the {industry} industry can leverage
Generative AI and Large Language Models for:
1. Internal Process Improvements
2. Customer Experience Enhancement
3. Product/Service Innovation
4. Data Analytics and Decision Making
For each use case, provide:
- Clear description
- Expected benefits
- Implementation considerations"""
)
chain = use_case_prompt | llm | StrOutputParser()
use_cases = chain.invoke({
"company": company,
"industry": industry,
"analysis": research_data['analysis'],
"raw_content": research_data['raw_content']
})
# Then extract relevant search queries
query_extraction_prompt = PromptTemplate.from_template(
"""Based on these AI/ML use cases for {company}:
{use_cases}
Extract Two specific search queries for finding relevant datasets and implementations.
Provide your response in this exact format:
DATASET QUERIES:
- query1
- query2
IMPLEMENTATION QUERIES:
- query1
- query2
Make queries specific and technical. Include ML model types, data types, and specific AI techniques."""
)
chain = query_extraction_prompt | llm | StrOutputParser()
queries_text = chain.invoke({
"company": company,
"use_cases": use_cases
})
# Parse the text response into structured format
def parse_queries(text):
dataset_queries = []
implementation_queries = []
current_section = None
for line in text.split('\n'):
line = line.strip()
if line == "DATASET QUERIES:":
current_section = "dataset"
elif line == "IMPLEMENTATION QUERIES:":
current_section = "implementation"
elif line.startswith("- "):
query = line[2:].strip()
if current_section == "dataset":
dataset_queries.append(query)
elif current_section == "implementation":
implementation_queries.append(query)
return {
"dataset_queries": dataset_queries or ["machine learning datasets business", "AI training data industry"],
"implementation_queries": implementation_queries or ["AI tools business automation", "machine learning implementation"]
}
search_queries = parse_queries(queries_text)
print("Search_queries: ", search_queries)
return {
"use_cases": use_cases,
"search_queries": search_queries
}
async def collect_targeted_resources(state: ResearchGraphState):
"""Find relevant datasets and resources using extracted queries."""
search_queries = state['search_queries']
resource_agent = ResourceCollectionAgent(max_results_per_query=5)
# Collect resources using targeted queries
all_resources = {
"datasets": [],
"implementations": []
}
# Search for datasets
for query in search_queries['dataset_queries']:
# Add platform-specific modifiers to queries
kaggle_query = f"site:kaggle.com/datasets {query}"
huggingface_query = f"site:huggingface.co/datasets {query}"
resources = await resource_agent.collect_resources()
# Process and categorize results
if resources.get("kaggle_datasets"):
all_resources["datasets"].extend([{
"title": item["title"],
"url": item["url"],
"description": item["snippet"],
"platform": "Kaggle",
"query": query
} for item in resources["kaggle_datasets"]])
if resources.get("huggingface_datasets"):
all_resources["datasets"].extend([{
"title": item["title"],
"url": item["url"],
"description": item["snippet"],
"platform": "HuggingFace",
"query": query
} for item in resources["huggingface_datasets"]])
# Search for implementations
for query in search_queries['implementation_queries']:
github_query = f"site:github.com {query}"
resources = await resource_agent.collect_resources()
if resources.get("github_repositories"):
all_resources["implementations"].extend([{
"title": item["title"],
"url": item["url"],
"description": item["snippet"],
"platform": "GitHub",
"query": query
} for item in resources["github_repositories"]])
print("Resources: ", all_resources)
return {"resources": all_resources}
def generate_pdf_report(state: ResearchGraphState):
"""Generate final PDF report with all collected information."""
research_data = state['research_results']
use_cases = state['use_cases']
resources = state['resources']
company = state['company']
industry = state['industry']
# Format resources for manual append later
datasets_section = "\n## Available Datasets\n"
if resources.get('datasets'):
for dataset in resources['datasets']:
datasets_section += f" - {dataset['platform']}: {dataset['url']}\n"
implementations_section = "\n## Implementation Resources\n"
if resources.get('implementations'):
for impl in resources['implementations']:
implementations_section += f" - {impl['platform']}: {impl['url']}\n"
prompt = PromptTemplate.from_template(
"""
# GenAI & ML Implementation Proposal for {company}
## Executive Summary
- **Current Position in the {industry} Industry**:
- **Key Opportunities for AI/ML Implementation**:
- **Expected Business Impact and ROI**:
- **Implementation Timeline Overview**:
## Industry and Company Analysis
{analysis}
## Strategic AI/ML Implementation Opportunities
Based on the analysis, here are the key opportunities for AI/ML implementation:
{use_cases}
Format the report in Markdown for clear sections, headings, and bullet points. Ensure professional formatting with structured subsections.
"""
)
chain = prompt | llm | StrOutputParser()
markdown_content = chain.invoke({
"company": company,
"industry": industry,
"analysis": research_data['analysis'],
"use_cases": use_cases,
})
if markdown_content.startswith("```markdown") and markdown_content.endswith("```"):
markdown_content = markdown_content[len("```markdown"):].rstrip("```").strip()
markdown_content += "\n\n" + datasets_section + "\n\n" + implementations_section
# Convert markdown to PDF
import tempfile
import os
import markdown2
from xhtml2pdf import pisa
# Create temporary directory and full path for PDF
temp_dir = tempfile.mkdtemp()
pdf_filename = f"{company.replace(' ', '_')}_research_report.pdf"
pdf_path = os.path.join(temp_dir, pdf_filename)
html_content = markdown2.markdown(markdown_content, extras=['tables', 'break-on-newline'])
# HTML template with enhanced styles (same as before)
html_template = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
@page {{
size: A4;
margin: 2.5cm;
@frame footer {{
-pdf-frame-content: footerContent;
bottom: 1cm;
margin-left: 1cm;
margin-right: 1cm;
height: 1cm;
}}
}}
body {{
font-family: Helvetica, Arial, sans-serif;
font-size: 11pt;
line-height: 1.6;
color: #2c3e50;
}}
h1 {{
font-size: 24pt;
color: #1a237e;
text-align: center;
margin-bottom: 2cm;
font-weight: bold;
}}
h2 {{
font-size: 18pt;
color: #283593;
margin-top: 1.5cm;
border-bottom: 2px solid #3949ab;
padding-bottom: 0.3cm;
}}
h3 {{
font-size: 14pt;
color: #3949ab;
margin-top: 1cm;
}}
h4 {{
font-size: 12pt;
color: #5c6bc0;
margin-top: 0.8cm;
}}
p {{
text-align: justify;
margin-bottom: 0.5cm;
}}
ul {{
margin-left: 0;
padding-left: 1cm;
margin-bottom: 0.5cm;
}}
li {{
margin-bottom: 0.3cm;
}}
a {{
color: #3f51b5;
text-decoration: none;
}}
strong {{
color: #283593;
}}
.use-case {{
background-color: #f5f7fa;
padding: 1cm;
margin: 0.5cm 0;
border-left: 4px solid #3949ab;
}}
.benefit {{
margin-left: 1cm;
color: #34495e;
}}
</style>
</head>
<body>
{html_content}
<div id="footerContent" style="text-align: center; font-size: 8pt; color: #7f8c8d;">
Page <pdf:pagenumber> of <pdf:pagecount>
</div>
</body>
</html>
"""
# Convert HTML to PDF with proper error handling
try:
with open(pdf_path, "w+b") as pdf_file:
result = pisa.CreatePDF(
html_template,
dest=pdf_file
)
if result.err:
print(f"Error generating PDF: {result.err}")
return {"final_report": None}
# Verify the file exists
if os.path.exists(pdf_path):
print(f"PDF successfully generated at: {pdf_path}")
return {"final_report": pdf_path}
else:
print("PDF file was not created successfully")
return {"final_report": None}
except Exception as e:
print(f"Exception during PDF generation: {str(e)}")
return {"final_report": None}
# Create workflow
workflow = StateGraph(ResearchGraphState)
# Add nodes
workflow.add_node("industry_research", industry_research)
workflow.add_node("use_cases_gen", generate_use_cases_and_queries)
workflow.add_node("resources_gen", collect_targeted_resources)
workflow.add_node("report", generate_pdf_report)
# Define edges
workflow.add_edge(START, "industry_research")
workflow.add_edge("industry_research", "use_cases_gen")
workflow.add_edge("use_cases_gen", "resources_gen")
workflow.add_edge("resources_gen", "report")
workflow.add_edge("report", END)
return workflow.compile()
async def run_industry_research(company: str, industry: str, llm):
"""Run the industry research workflow asynchronously."""
workflow = create_industry_research_workflow(llm)
final_state = None
output = await workflow.ainvoke(input={
"company": company,
"industry": industry
}, config={"recursion_limit": 5})
return output['final_report']
# Example usage
if __name__ == "__main__":
async def main():
# Initialize LLM
llm = ChatOpenAI(
model="gpt-3.5-turbo-0125",
temperature=0.3,
timeout=None,
max_retries=2,)
# Run the workflow
report_path = await run_industry_research(
company="Adani Defence & Aerospace",
industry="Defense Engineering and Construction",
llm=llm
)
print(f"Report generated at: {report_path}")
asyncio.run(main()) |