File size: 15,418 Bytes
db17bc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import streamlit as st
import asyncio
from src.vectorstore.pinecone_db import ingest_data, get_retriever, load_documents, process_chunks, save_to_parquet
from src.agents.research_agent import create_industry_research_workflow
from src.agents.workflow import run_adaptive_rag
from pinecone import Pinecone
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langgraph.pregel import GraphRecursionError
import tempfile
import os
import time
from pathlib import Path
# Page configuration
st.set_page_config(
page_title="Research & RAG Assistant",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better UI
st.markdown("""
<style>
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
padding: 8px 16px;
}
.config-section {
background-color: #f0f2f6;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
}
.chat-container {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 20px;
margin-top: 20px;
}
.stButton>button {
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Initialize session states
if "messages" not in st.session_state:
st.session_state.messages = []
if "documents_processed" not in st.session_state:
st.session_state.documents_processed = False
if "retriever" not in st.session_state:
st.session_state.retriever = None
if "pinecone_client" not in st.session_state:
st.session_state.pinecone_client = None
if "research_config_saved" not in st.session_state:
st.session_state.research_config_saved = False
if "rag_config_saved" not in st.session_state:
st.session_state.rag_config_saved = False
def save_research_config(api_keys):
"""Save research configuration."""
st.session_state.research_openai_key = api_keys['openai']
st.session_state.research_tavily_key = api_keys['tavily']
st.session_state.research_config_saved = True
def research_config_section():
"""Configuration section for Company Research tab."""
st.markdown("### βοΈ Configuration")
with st.expander("API Configuration", expanded=not st.session_state.research_config_saved):
col1, col2 = st.columns(2)
with col1:
openai_key = st.text_input(
"OpenAI API Key",
type="password",
value=st.session_state.get('research_openai_key', ''),
key="research_openai_input"
)
with col2:
tavily_key = st.text_input(
"Tavily API Key",
type="password",
value=st.session_state.get('research_tavily_key', ''),
key="research_tavily_input"
)
if st.button("Save Research Configuration", key="save_research_config"):
if openai_key and tavily_key:
save_research_config({
'openai': openai_key,
'tavily': tavily_key
})
if not os.environ.get("TAVILY_API_KEY"):
os.environ["TAVILY_API_KEY"] = tavily_key
st.success("β
Research configuration saved!")
else:
st.error("Please provide both API keys.")
async def run_industry_research(company: str, industry: str, llm):
"""Run the industry research workflow asynchronously."""
workflow = create_industry_research_workflow(llm)
output = await workflow.ainvoke(input={
"company": company,
"industry": industry
}, config={"recursion_limit": 5})
return output['final_report']
def research_input_section():
"""Input section for Company Research tab."""
st.markdown("### π Research Parameters")
col1, col2 = st.columns(2)
with col1:
company_name = st.text_input(
"Company Name",
placeholder="e.g., Tesla",
help="Enter the name of the company to research"
)
with col2:
industry_type = st.text_input(
"Industry Type",
placeholder="e.g., Automotive",
help="Enter the industry sector"
)
if st.button("Generate Research Report",
disabled=not st.session_state.research_config_saved,
type="primary"):
if company_name and industry_type:
with st.spinner("π Generating comprehensive research report..."):
# try:
# Initialize LLM and run research
llm = ChatOpenAI(
model="gpt-3.5-turbo-0125",
temperature=0.1,
api_key=st.session_state.research_openai_key
)
report_path = asyncio.run(run_industry_research(
company=company_name,
industry=industry_type,
llm=llm
))
if os.path.exists(report_path):
with open(report_path, "rb") as file:
st.download_button(
"π₯ Download Research Report",
data=file,
file_name=f"{company_name}_research_report.pdf",
mime="application/pdf"
)
else:
st.error("Report generation failed.")
# except Exception as e:
# st.error(f"Error during report generation: {str(e)}")
else:
st.warning("Please fill in both company name and industry type.")
def initialize_pinecone(api_key):
"""Initialize Pinecone client with API key."""
try:
return Pinecone(api_key=api_key)
except Exception as e:
st.error(f"Error initializing Pinecone: {str(e)}")
return None
def initialize_llm(llm_option, openai_api_key=None):
"""Initialize LLM based on user selection."""
if llm_option == "OpenAI":
if not openai_api_key:
st.sidebar.warning("Please enter OpenAI API key.")
return None
return ChatOpenAI(api_key=openai_api_key, model="gpt-3.5-turbo")
def clear_pinecone_index(pc, index_name="vector-index"):
"""Clear the Pinecone index."""
try:
pc.delete_index(index_name)
st.session_state.documents_processed = False
st.session_state.retriever = None
st.success("Database cleared successfully!")
except Exception as e:
st.error(f"Error clearing database: {str(e)}")
def process_documents(uploaded_files, pc):
"""Process uploaded documents and store in Pinecone."""
if not uploaded_files:
st.warning("Please upload at least one document.")
return False
with st.spinner("Processing documents..."):
temp_dir = tempfile.mkdtemp()
file_paths = []
markdown_path = Path(temp_dir) / "combined.md"
parquet_path = Path(temp_dir) / "documents.parquet"
for uploaded_file in uploaded_files:
file_path = Path(temp_dir) / uploaded_file.name
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
file_paths.append(str(file_path))
try:
markdown_path = load_documents(file_paths, output_path=markdown_path)
chunks = process_chunks(markdown_path, chunk_size=256, threshold=0.6)
print(f"Processed chunks: {chunks}")
parquet_path = save_to_parquet(chunks, parquet_path)
ingest_data(
pc=pc,
parquet_path=parquet_path,
text_column="text",
pinecone_client=pc
)
st.session_state.retriever = get_retriever(pc)
st.session_state.documents_processed = True
return True
except Exception as e:
st.error(f"Error processing documents: {str(e)}")
return False
finally:
for file_path in file_paths:
try:
os.remove(file_path)
except:
pass
try:
os.rmdir(temp_dir)
except:
pass
def run_rag_with_streaming(retriever, question, llm, enable_web_search=False):
"""Run RAG workflow and yield streaming results."""
try:
response = run_adaptive_rag(
retriever=retriever,
question=question,
llm=llm,
top_k=5,
enable_websearch=enable_web_search
)
for word in response.split():
yield word + " "
time.sleep(0.03)
except GraphRecursionError:
response = "I apologize, but I cannot find a sufficient answer to your question in the provided documents. Please try rephrasing your question or ask something else about the content of the documents."
for word in response.split():
yield word + " "
time.sleep(0.03)
except Exception as e:
yield f"I encountered an error while processing your question: {str(e)}"
def document_upload_section():
"""Document upload section for RAG tab."""
st.markdown("### π Document Management")
if not st.session_state.documents_processed:
uploaded_files = st.file_uploader(
"Upload your documents",
accept_multiple_files=True,
type=["pdf", "docx", "txt", "pptx", "md"],
help="Support multiple file uploads"
)
col1, col2 = st.columns([3, 1])
with col1:
if uploaded_files:
st.info(f"π {len(uploaded_files)} files selected")
with col2:
if st.button(
"Process Documents",
disabled=not (uploaded_files and st.session_state.rag_config_saved)
):
if process_documents(uploaded_files, st.session_state.pinecone_client):
st.success("β
Documents processed successfully!")
else:
st.success("β
Documents are loaded and ready for querying!")
if st.button("Upload New Documents"):
st.session_state.documents_processed = False
st.rerun()
# Update the save_rag_config function to remove web_search
def save_rag_config(config):
"""Save RAG configuration."""
st.session_state.rag_pinecone_key = config['pinecone']
st.session_state.rag_openai_key = config['openai']
st.session_state.rag_config_saved = True
# Update the rag_config_section to remove web_search checkbox
def rag_config_section():
"""Configuration section for RAG tab."""
st.markdown("### βοΈ Configuration")
with st.expander("API Configuration", expanded=not st.session_state.rag_config_saved):
col1, col2 = st.columns(2)
with col1:
pinecone_key = st.text_input(
"Pinecone API Key",
type="password",
value=st.session_state.get('rag_pinecone_key', ''),
key="rag_pinecone_input"
)
with col2:
openai_key = st.text_input(
"OpenAI API Key",
type="password",
value=st.session_state.get('rag_openai_key', ''),
key="rag_openai_input"
)
if st.button("Save RAG Configuration", key="save_rag_config"):
if pinecone_key and openai_key:
save_rag_config({
'pinecone': pinecone_key,
'openai': openai_key
})
# Initialize Pinecone client
st.session_state.pinecone_client = initialize_pinecone(pinecone_key)
st.success("β
RAG configuration saved!")
else:
st.error("Please provide both API keys.")
# Update the chat_interface function to include web search toggle
def chat_interface():
"""Enhanced chat interface with streaming responses and web search toggle."""
st.markdown("### π¬ Chat Interface")
# Add web search toggle in the chat interface
col1, col2 = st.columns([3, 1])
with col2:
web_search = st.checkbox(
"π Enable Web Search",
value=st.session_state.get('use_web_search', False),
help="Toggle web search for additional context",
key="web_search_toggle"
)
st.session_state.use_web_search = web_search
# Chat container with messages
chat_container = st.container()
with chat_container:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input(
"Ask a question about your documents...",
disabled=not st.session_state.documents_processed,
key="chat_input"
):
# User message
with st.chat_message("user"):
if st.session_state.use_web_search:
st.markdown(f"{prompt} π")
else:
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Assistant response
with st.chat_message("assistant"):
response_container = st.empty()
full_response = ""
try:
with st.spinner("Thinking..."):
llm = ChatOpenAI(
api_key=st.session_state.rag_openai_key,
model="gpt-3.5-turbo"
)
for chunk in run_rag_with_streaming(
retriever=st.session_state.retriever,
question=prompt,
llm=llm,
enable_web_search=st.session_state.use_web_search
):
full_response += chunk
response_container.markdown(full_response + "β")
response_container.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
except Exception as e:
st.error(f"Error: {str(e)}")
def main():
"""Main application layout."""
st.title("π€ Research & RAG Assistant")
tab1, tab2 = st.tabs(["π Company Research", "π¬ Document Q&A"])
with tab1:
research_config_section()
if st.session_state.research_config_saved:
st.divider()
research_input_section()
else:
st.info("π Please configure your API keys above to get started.")
with tab2:
rag_config_section()
if st.session_state.rag_config_saved:
st.divider()
document_upload_section()
if st.session_state.documents_processed:
st.divider()
chat_interface()
else:
st.info("π Please configure your API keys above to get started.")
if __name__ == "__main__":
main() |