anilguven commited on
Commit
f49bd43
·
verified ·
1 Parent(s): 3027a60

Upload 1_Movie_Reviews.py

Browse files
Files changed (1) hide show
  1. pages/1_Movie_Reviews.py +68 -0
pages/1_Movie_Reviews.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(page_title="Turkish Review Analysis - via AG", page_icon='📖')
4
+ st.header("📖Movie Review Analysis - TR")
5
+
6
+ with st.sidebar:
7
+ hf_key = st.text_input("HuggingFace Access Key", key="hf_key", type="password")
8
+
9
+ MODEL_MOVIE = {
10
+ "albert": "anilguven/albert_tr_turkish_movie_reviews", # Add the emoji for the Meta-Llama model
11
+ "distilbert": "anilguven/distilbert_tr_turkish_movie_reviews",
12
+ "bert": "anilguven/bert_tr_turkish_movie_reviews",
13
+ "electra": "anilguven/electra_tr_turkish_movie_reviews",
14
+ }
15
+
16
+ MODEL_MOVIES = ["albert","distilbert","bert","electra"]
17
+
18
+ # Use a pipeline as a high-level helper
19
+ from transformers import pipeline
20
+ # Create a mapping from formatted model names to their original identifiers
21
+ def format_model_name(model_key):
22
+ name_parts = model_key
23
+ formatted_name = ''.join(name_parts) # Join them into a single string with title case
24
+ return formatted_name
25
+
26
+ formatted_names_to_identifiers = {
27
+ format_model_name(key): key for key in MODEL_MOVIE.keys()
28
+ }
29
+
30
+ with st.expander("About this app"):
31
+ st.write(f"""
32
+ 1-Choose your model for movie review analysis (negative or positive).\n
33
+ 2-Enter your sample text.\n
34
+ 3-And model predict your text's result.
35
+ """)
36
+
37
+ # Debug to ensure names are formatted correctly
38
+ #st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers)
39
+
40
+ model_name: str = st.selectbox("Model", options=MODEL_MOVIES)
41
+ selected_model = MODEL_MOVIE[model_name]
42
+
43
+ if not hf_key:
44
+ st.info("Please add your HuggingFace Access Key to continue.")
45
+ st.stop()
46
+
47
+ access_token = hf_key
48
+ pipe = pipeline("text-classification", model=selected_model, token=access_token)
49
+
50
+ #from transformers import AutoTokenizer, AutoModelForSequenceClassification
51
+ #tokenizer = AutoTokenizer.from_pretrained(selected_model)
52
+ #pipe = AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path=selected_model)
53
+
54
+ comment = st.text_input("Enter your text for analysis")#User input
55
+
56
+ st.text('')
57
+ if st.button("Submit for Analysis"):#User Review Button
58
+ if not hf_key:
59
+ st.info("Please add your HuggingFace Access Key to continue.")
60
+ st.stop()
61
+ else:
62
+ result = pipe(comment)[0]
63
+ label=''
64
+ if result["label"] == "LABEL_0": label = "Negative"
65
+ else: label = "Positive"
66
+ st.text(label + " comment with " + str(result["score"]) + " accuracy")
67
+
68
+