Spaces:
Running
Running
| import os | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import gradio as gr | |
| import json | |
| import matplotlib.pyplot as plt | |
| import subprocess | |
| repo_url = "https://github.com/CASIA-IVA-Lab/FastSAM.git" | |
| target_directory = "./FastSAM" | |
| subprocess.run(['git', 'clone', repo_url, target_directory]) | |
| os.chdir('./FastSAM') | |
| print('pwd: ', os.getcwd()) | |
| from fastsam import FastSAM, FastSAMPrompt | |
| import ast | |
| import torch | |
| from PIL import Image | |
| from utils.tools import convert_box_xywh_to_xyxy | |
| def gradio_fn(pil_input_img): | |
| # load model | |
| model = FastSAM('./weights/FastSAM.pt') | |
| args_point_prompt = ast.literal_eval("[[0,0]]") | |
| args_box_prompt = convert_box_xywh_to_xyxy(ast.literal_eval("[[0,0,0,0]]")) | |
| args_point_label = ast.literal_eval("[0]") | |
| args_text_prompt = None | |
| input = pil_input_img | |
| input = input.convert("RGB") | |
| everything_results = model( | |
| input, | |
| device="cpu", | |
| retina_masks=True, | |
| imgsz=1024, | |
| conf=0.4, | |
| iou=0.9 | |
| ) | |
| bboxes = None | |
| points = None | |
| point_label = None | |
| prompt_process = FastSAMPrompt(input, everything_results, device="cpu") | |
| if args_box_prompt[0][2] != 0 and args_box_prompt[0][3] != 0: | |
| ann = prompt_process.box_prompt(bboxes=args_box_prompt) | |
| bboxes = args_box_prompt | |
| elif args_text_prompt != None: | |
| ann = prompt_process.text_prompt(text=args_text_prompt) | |
| elif args_point_prompt[0] != [0, 0]: | |
| ann = prompt_process.point_prompt( | |
| points=args_point_prompt, pointlabel=args_point_label | |
| ) | |
| points = args_point_prompt | |
| point_label = args_point_label | |
| else: | |
| ann = prompt_process.everything_prompt() | |
| prompt_process.plot( | |
| annotations=ann, | |
| output_path="./output.jpg", | |
| bboxes = bboxes, | |
| points = points, | |
| point_label = point_label, | |
| withContours=False, | |
| better_quality=False, | |
| ) | |
| pil_image_output = Image.open('./output.jpg') | |
| np_img_array = np.array(pil_image_output) | |
| return np_img_array | |
| demo = gr.Interface(fn=gradio_fn, | |
| inputs=gr.Image(type="pil"), | |
| outputs="image", | |
| title="FAST-SAM Segment Everything", | |
| description="- **FastSAM** model that returns segmented RGB image of given input image. \ | |
| - **Credits** : \ | |
| - https://huggingface.co/An-619 \ | |
| - https://github.com/CASIA-IVA-Lab/FastSAM") |