anibalronald commited on
Commit
f373cf9
verified
1 Parent(s): 9c856d7
Files changed (1) hide show
  1. app.py +0 -60
app.py DELETED
@@ -1,60 +0,0 @@
1
- from fastapi import FastAPI
2
- from pydantic import BaseModel
3
- import pickle
4
- import numpy as np
5
- from fastapi.middleware.cors import CORSMiddleware
6
-
7
- # Cargar el modelo desde el archivo .pkl
8
- with open("miarbolcancer.pkl", "rb") as f:
9
- model = pickle.load(f)
10
-
11
- # Definir el modelo de datos con Pydantic (sin ca_cervix como entrada)
12
- class PredictionInput(BaseModel):
13
- behavior_sexualRisk: float
14
- behavior_eating: float
15
- behavior_personalHygine: float
16
- intention_aggregation: float
17
- intention_commitment: float
18
- attitude_consistency: float
19
- attitude_spontaneity: float
20
- norm_significantPerson: float
21
- norm_fulfillment: float
22
- perception_vulnerability: float
23
- perception_severity: float
24
- motivation_strength: float
25
- motivation_willingness: float
26
- socialSupport_emotionality: float
27
- socialSupport_appreciation: float
28
- socialSupport_instrumental: float
29
- empowerment_knowledge: float
30
- empowerment_abilities: float
31
- empowerment_desires: float
32
-
33
- # Crear la aplicaci贸n FastAPI
34
- app = FastAPI()
35
- # CORS
36
- app.add_middleware(
37
- CORSMiddleware,
38
- allow_origins=["*"],
39
- allow_credentials=True,
40
- allow_methods=["*"],
41
- allow_headers=["*"],
42
- )
43
- # Definir el endpoint de predicci贸n
44
- @app.post("/predict/")
45
- def predict(input_data: PredictionInput):
46
- # Convertir los datos de entrada en un array numpy
47
- input_array = np.array([[input_data.behavior_sexualRisk, input_data.behavior_eating, input_data.behavior_personalHygine,
48
- input_data.intention_aggregation, input_data.intention_commitment, input_data.attitude_consistency,
49
- input_data.attitude_spontaneity, input_data.norm_significantPerson, input_data.norm_fulfillment,
50
- input_data.perception_vulnerability, input_data.perception_severity, input_data.motivation_strength,
51
- input_data.motivation_willingness, input_data.socialSupport_emotionality, input_data.socialSupport_appreciation,
52
- input_data.socialSupport_instrumental, input_data.empowerment_knowledge, input_data.empowerment_abilities,
53
- input_data.empowerment_desires]])
54
-
55
- # Realizar la predicci贸n (el modelo debe predecir ca_cervix)
56
- prediction = model.predict(input_array)
57
-
58
- # Retornar la predicci贸n (ca_cervix)
59
- return {"ca_cervix_prediction": prediction[0]}
60
-