import math import torch from typing import List, Optional def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def kl_divergence(m_p, logs_p, m_q, logs_q): kl = (logs_q - logs_p) - 0.5 kl += (0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)) return kl def slice_segments(x: torch.Tensor, ids_str: torch.Tensor, segment_size: int = 4, dim: int = 2): if dim == 2: ret = torch.zeros_like(x[:, :segment_size]) elif dim == 3: ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i].item() idx_end = idx_str + segment_size if dim == 2: ret[i] = x[i, idx_str:idx_end] else: ret[i] = x[i, :, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) ret = slice_segments(x, ids_str, segment_size, dim=3) return ret, ids_str def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): position = torch.arange(length, dtype=torch.float) num_timescales = channels // 2 log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1) inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) signal = torch.nn.functional.pad(signal, [0, 0, 0, channels % 2]) signal = signal.view(1, channels, length) return signal def subsequent_mask(length): mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) return mask @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]: return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist() def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def clip_grad_value(parameters, clip_value, norm_type=2): if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) norm_type = float(norm_type) if clip_value is not None: clip_value = float(clip_value) total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm.item() ** norm_type if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) total_norm = total_norm ** (1.0 / norm_type) return total_norm