AnhP's picture
Upload 65 files
98bb602 verified
raw
history blame
26.2 kB
import os
import math
import torch
import librosa
import numpy as np
import torch.nn as nn
import soundfile as sf
import torch.utils.data
import torch.nn.functional as F
from torch import nn
from typing import Union
from functools import partial
from einops import rearrange, repeat
from torchaudio.transforms import Resample
from local_attention import LocalAttention
from librosa.filters import mel as librosa_mel_fn
from torch.nn.utils.parametrizations import weight_norm
os.environ["LRU_CACHE_CAPACITY"] = "3"
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
try:
data, sample_rate = sf.read(full_path, always_2d=True)
except Exception as e:
print(f"{full_path}: {e}")
if return_empty_on_exception: return [], sample_rate or target_sr or 48000
else: raise
data = data[:, 0] if len(data.shape) > 1 else data
assert len(data) > 2
max_mag = (-np.iinfo(data.dtype).min if np.issubdtype(data.dtype, np.integer) else max(np.amax(data), -np.amin(data)))
max_mag = ((2**31) + 1 if max_mag > (2**15) else ((2**15) + 1 if max_mag > 1.01 else 1.0))
data = torch.FloatTensor(data.astype(np.float32)) / max_mag
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: return [], sample_rate or target_sr or 48000
if target_sr is not None and sample_rate != target_sr:
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sample_rate, target_sr=target_sr))
sample_rate = target_sr
return data, sample_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
class STFT:
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
self.target_sr = sr
self.n_mels = n_mels
self.n_fft = n_fft
self.win_size = win_size
self.hop_length = hop_length
self.fmin = fmin
self.fmax = fmax
self.clip_val = clip_val
self.mel_basis = {}
self.hann_window = {}
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
sample_rate = self.target_sr
n_mels = self.n_mels
n_fft = self.n_fft
win_size = self.win_size
hop_length = self.hop_length
fmin = self.fmin
fmax = self.fmax
clip_val = self.clip_val
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(n_fft * factor))
win_size_new = int(np.round(win_size * factor))
hop_length_new = int(np.round(hop_length * speed))
mel_basis = self.mel_basis if not train else {}
hann_window = self.hann_window if not train else {}
mel_basis_key = str(fmax) + "_" + str(y.device)
if mel_basis_key not in mel_basis:
mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
keyshift_key = str(keyshift) + "_" + str(y.device)
if keyshift_key not in hann_window: hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
pad_left = (win_size_new - hop_length_new) // 2
pad_right = max((win_size_new - hop_length_new + 1) // 2, win_size_new - y.size(-1) - pad_left)
mode = "reflect" if pad_right < y.size(-1) else "constant"
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode)
y = y.squeeze(1)
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
if keyshift != 0:
size = n_fft // 2 + 1
resize = spec.size(1)
spec = (F.pad(spec, (0, 0, 0, size - resize)) if resize < size else spec[:, :size, :])
spec = spec * win_size / win_size_new
spec = torch.matmul(mel_basis[mel_basis_key], spec)
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
return spec
def __call__(self, audiopath):
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
return spect
stft = STFT()
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None):
b, h, *_ = data.shape
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0
ratio = projection_matrix.shape[0] ** -0.5
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h)
projection = projection.type_as(data)
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection)
diag_data = data**2
diag_data = torch.sum(diag_data, dim=-1)
diag_data = (diag_data / 2.0) * (data_normalizer**2)
diag_data = diag_data.unsqueeze(dim=-1)
if is_query: data_dash = ratio * (torch.exp(data_dash - diag_data - torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
else: data_dash = ratio * (torch.exp(data_dash - diag_data + eps))
return data_dash.type_as(data)
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None):
unstructured_block = torch.randn((cols, cols), device=device)
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced")
q, r = map(lambda t: t.to(device), (q, r))
if qr_uniform_q:
d = torch.diag(r, 0)
q *= d.sign()
return q.t()
def exists(val):
return val is not None
def empty(tensor):
return tensor.numel() == 0
def default(val, d):
return val if exists(val) else d
def cast_tuple(val):
return (val,) if not isinstance(val, tuple) else val
class PCmer(nn.Module):
def __init__(self, num_layers, num_heads, dim_model, dim_keys, dim_values, residual_dropout, attention_dropout):
super().__init__()
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_values = dim_values
self.dim_keys = dim_keys
self.residual_dropout = residual_dropout
self.attention_dropout = attention_dropout
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
def forward(self, phone, mask=None):
for layer in self._layers:
phone = layer(phone, mask)
return phone
class _EncoderLayer(nn.Module):
def __init__(self, parent: PCmer):
super().__init__()
self.conformer = ConformerConvModule(parent.dim_model)
self.norm = nn.LayerNorm(parent.dim_model)
self.dropout = nn.Dropout(parent.residual_dropout)
self.attn = SelfAttention(dim=parent.dim_model, heads=parent.num_heads, causal=False)
def forward(self, phone, mask=None):
phone = phone + (self.attn(self.norm(phone), mask=mask))
phone = phone + (self.conformer(phone))
return phone
def calc_same_padding(kernel_size):
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
class Swish(nn.Module):
def forward(self, x):
return x * x.sigmoid()
class Transpose(nn.Module):
def __init__(self, dims):
super().__init__()
assert len(dims) == 2, "dims == 2"
self.dims = dims
def forward(self, x):
return x.transpose(*self.dims)
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class DepthWiseConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size, padding):
super().__init__()
self.padding = padding
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv(x)
class ConformerConvModule(nn.Module):
def __init__(self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0):
super().__init__()
inner_dim = dim * expansion_factor
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
self.net = nn.Sequential(nn.LayerNorm(dim), Transpose((1, 2)), nn.Conv1d(dim, inner_dim * 2, 1), GLU(dim=1), DepthWiseConv1d(inner_dim, inner_dim, kernel_size=kernel_size, padding=padding), Swish(), nn.Conv1d(inner_dim, dim, 1), Transpose((1, 2)), nn.Dropout(dropout))
def forward(self, x):
return self.net(x)
def linear_attention(q, k, v):
if v is None:
out = torch.einsum("...ed,...nd->...ne", k, q)
return out
else:
k_cumsum = k.sum(dim=-2)
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8)
context = torch.einsum("...nd,...ne->...de", k, v)
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv)
return out
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None):
nb_full_blocks = int(nb_rows / nb_columns)
block_list = []
for _ in range(nb_full_blocks):
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)
block_list.append(q)
remaining_rows = nb_rows - nb_full_blocks * nb_columns
if remaining_rows > 0:
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q=qr_uniform_q, device=device)
block_list.append(q[:remaining_rows])
final_matrix = torch.cat(block_list)
if scaling == 0: multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1)
elif scaling == 1: multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device=device)
else: raise ValueError(f"Chia không hợp lệ {scaling}")
return torch.diag(multiplier) @ final_matrix
class FastAttention(nn.Module):
def __init__(self, dim_heads, nb_features=None, ortho_scaling=0, causal=False, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, no_projection=False):
super().__init__()
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
self.dim_heads = dim_heads
self.nb_features = nb_features
self.ortho_scaling = ortho_scaling
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows=self.nb_features, nb_columns=dim_heads, scaling=ortho_scaling, qr_uniform_q=qr_uniform_q)
projection_matrix = self.create_projection()
self.register_buffer("projection_matrix", projection_matrix)
self.generalized_attention = generalized_attention
self.kernel_fn = kernel_fn
self.no_projection = no_projection
self.causal = causal
@torch.no_grad()
def redraw_projection_matrix(self):
projections = self.create_projection()
self.projection_matrix.copy_(projections)
del projections
def forward(self, q, k, v):
device = q.device
if self.no_projection:
q = q.softmax(dim=-1)
k = torch.exp(k) if self.causal else k.softmax(dim=-2)
else:
create_kernel = partial(softmax_kernel, projection_matrix=self.projection_matrix, device=device)
q = create_kernel(q, is_query=True)
k = create_kernel(k, is_query=False)
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
if v is None:
out = attn_fn(q, k, None)
return out
else:
out = attn_fn(q, k, v)
return out
class SelfAttention(nn.Module):
def __init__(self, dim, causal=False, heads=8, dim_head=64, local_heads=0, local_window_size=256, nb_features=None, feature_redraw_interval=1000, generalized_attention=False, kernel_fn=nn.ReLU(), qr_uniform_q=False, dropout=0.0, no_projection=False):
super().__init__()
assert dim % heads == 0
dim_head = default(dim_head, dim // heads)
inner_dim = dim_head * heads
self.fast_attention = FastAttention(dim_head, nb_features, causal=causal, generalized_attention=generalized_attention, kernel_fn=kernel_fn, qr_uniform_q=qr_uniform_q, no_projection=no_projection)
self.heads = heads
self.global_heads = heads - local_heads
self.local_attn = (LocalAttention(window_size=local_window_size, causal=causal, autopad=True, dropout=dropout, look_forward=int(not causal), rel_pos_emb_config=(dim_head, local_heads)) if local_heads > 0 else None)
self.to_q = nn.Linear(dim, inner_dim)
self.to_k = nn.Linear(dim, inner_dim)
self.to_v = nn.Linear(dim, inner_dim)
self.to_out = nn.Linear(inner_dim, dim)
self.dropout = nn.Dropout(dropout)
@torch.no_grad()
def redraw_projection_matrix(self):
self.fast_attention.redraw_projection_matrix()
def forward(self, x, context=None, mask=None, context_mask=None, name=None, inference=False, **kwargs):
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
cross_attend = exists(context)
context = default(context, x)
context_mask = default(context_mask, mask) if not cross_attend else context_mask
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
attn_outs = []
if not empty(q):
if exists(context_mask):
global_mask = context_mask[:, None, :, None]
v.masked_fill_(~global_mask, 0.0)
if cross_attend: pass
else: out = self.fast_attention(q, k, v)
attn_outs.append(out)
if not empty(lq):
assert (not cross_attend), "not cross_attend"
out = self.local_attn(lq, lk, lv, input_mask=mask)
attn_outs.append(out)
out = torch.cat(attn_outs, dim=1)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out(out)
return self.dropout(out)
def l2_regularization(model, l2_alpha):
l2_loss = []
for module in model.modules():
if type(module) is nn.Conv2d: l2_loss.append((module.weight**2).sum() / 2.0)
return l2_alpha * sum(l2_loss)
class _FCPE(nn.Module):
def __init__(self, input_channel=128, out_dims=360, n_layers=12, n_chans=512, use_siren=False, use_full=False, loss_mse_scale=10, loss_l2_regularization=False, loss_l2_regularization_scale=1, loss_grad1_mse=False, loss_grad1_mse_scale=1, f0_max=1975.5, f0_min=32.70, confidence=False, threshold=0.05, use_input_conv=True):
super().__init__()
if use_siren: raise ValueError("Siren not support")
if use_full: raise ValueError("Model full not support")
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
self.loss_l2_regularization = (loss_l2_regularization if (loss_l2_regularization is not None) else False)
self.loss_l2_regularization_scale = (loss_l2_regularization_scale if (loss_l2_regularization_scale is not None) else 1)
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
self.loss_grad1_mse_scale = (loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1)
self.f0_max = f0_max if (f0_max is not None) else 1975.5
self.f0_min = f0_min if (f0_min is not None) else 32.70
self.confidence = confidence if (confidence is not None) else False
self.threshold = threshold if (threshold is not None) else 0.05
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
self.cent_table_b = torch.Tensor(np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], out_dims))
self.register_buffer("cent_table", self.cent_table_b)
_leaky = nn.LeakyReLU()
self.stack = nn.Sequential(nn.Conv1d(input_channel, n_chans, 3, 1, 1), nn.GroupNorm(4, n_chans), _leaky, nn.Conv1d(n_chans, n_chans, 3, 1, 1))
self.decoder = PCmer(num_layers=n_layers, num_heads=8, dim_model=n_chans, dim_keys=n_chans, dim_values=n_chans, residual_dropout=0.1, attention_dropout=0.1)
self.norm = nn.LayerNorm(n_chans)
self.n_out = out_dims
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out))
def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax"):
if cdecoder == "argmax": self.cdecoder = self.cents_decoder
elif cdecoder == "local_argmax": self.cdecoder = self.cents_local_decoder
x = (self.stack(mel.transpose(1, 2)).transpose(1, 2) if self.use_input_conv else mel)
x = self.decoder(x)
x = self.norm(x)
x = self.dense_out(x)
x = torch.sigmoid(x)
if not infer:
gt_cent_f0 = self.f0_to_cent(gt_f0)
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0)
loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0)
if self.loss_l2_regularization: loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
x = loss_all
if infer:
x = self.cdecoder(x)
x = self.cent_to_f0(x)
x = (1 + x / 700).log() if not return_hz_f0 else x
return x
def cents_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)
if mask:
confident = torch.max(y, dim=-1, keepdim=True)[0]
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
return (rtn, confident) if self.confidence else rtn
def cents_local_decoder(self, y, mask=True):
B, N, _ = y.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
confident, max_index = torch.max(y, dim=-1, keepdim=True)
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4)
local_argmax_index = torch.clamp(local_argmax_index, 0, self.n_out - 1)
ci_l = torch.gather(ci, -1, local_argmax_index)
y_l = torch.gather(y, -1, local_argmax_index)
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True)
if mask:
confident_mask = torch.ones_like(confident)
confident_mask[confident <= self.threshold] = float("-INF")
rtn = rtn * confident_mask
return (rtn, confident) if self.confidence else rtn
def cent_to_f0(self, cent):
return 10.0 * 2 ** (cent / 1200.0)
def f0_to_cent(self, f0):
return 1200.0 * torch.log2(f0 / 10.0)
def gaussian_blurred_cent(self, cents):
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0)))
B, N, _ = cents.size()
ci = self.cent_table[None, None, :].expand(B, N, -1)
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
class FCPEInfer:
def __init__(self, model_path, device=None, dtype=torch.float32):
if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
ckpt = torch.load(model_path, map_location=torch.device(self.device))
self.args = DotDict(ckpt["config"])
self.dtype = dtype
model = _FCPE(input_channel=self.args.model.input_channel, out_dims=self.args.model.out_dims, n_layers=self.args.model.n_layers, n_chans=self.args.model.n_chans, use_siren=self.args.model.use_siren, use_full=self.args.model.use_full, loss_mse_scale=self.args.loss.loss_mse_scale, loss_l2_regularization=self.args.loss.loss_l2_regularization, loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, loss_grad1_mse=self.args.loss.loss_grad1_mse, loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, f0_max=self.args.model.f0_max, f0_min=self.args.model.f0_min, confidence=self.args.model.confidence)
model.to(self.device).to(self.dtype)
model.load_state_dict(ckpt["model"])
model.eval()
self.model = model
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)
@torch.no_grad()
def __call__(self, audio, sr, threshold=0.05):
self.model.threshold = threshold
audio = audio[None, :]
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
return f0
class Wav2Mel:
def __init__(self, args, device=None, dtype=torch.float32):
self.sample_rate = args.mel.sampling_rate
self.hop_size = args.mel.hop_size
if device is None: device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.dtype = dtype
self.stft = STFT(args.mel.sampling_rate, args.mel.num_mels, args.mel.n_fft, args.mel.win_size, args.mel.hop_size, args.mel.fmin, args.mel.fmax)
self.resample_kernel = {}
def extract_nvstft(self, audio, keyshift=0, train=False):
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2)
return mel
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
audio = audio.to(self.dtype).to(self.device)
if sample_rate == self.sample_rate: audio_res = audio
else:
key_str = str(sample_rate)
if key_str not in self.resample_kernel: self.resample_kernel[key_str] = Resample(sample_rate, self.sample_rate, lowpass_filter_width=128)
self.resample_kernel[key_str] = (self.resample_kernel[key_str].to(self.dtype).to(self.device))
audio_res = self.resample_kernel[key_str](audio)
mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train)
n_frames = int(audio.shape[1] // self.hop_size) + 1
mel = (torch.cat((mel, mel[:, -1:, :]), 1) if n_frames > int(mel.shape[1]) else mel)
mel = mel[:, :n_frames, :] if n_frames < int(mel.shape[1]) else mel
return mel
def __call__(self, audio, sample_rate, keyshift=0, train=False):
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
class DotDict(dict):
def __getattr__(*args):
val = dict.get(*args)
return DotDict(val) if type(val) is dict else val
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class F0Predictor(object):
def compute_f0(self, wav, p_len): pass
def compute_f0_uv(self, wav, p_len): pass
class FCPE(F0Predictor):
def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sample_rate=44100, threshold=0.05):
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.threshold = threshold
self.sample_rate = sample_rate
self.dtype = dtype
self.name = "fcpe"
def repeat_expand(self, content: Union[torch.Tensor, np.ndarray], target_len, mode = "nearest"):
ndim = content.ndim
content = (content[None, None] if ndim == 1 else content[None] if ndim == 2 else content)
assert content.ndim == 3
is_np = isinstance(content, np.ndarray)
content = torch.from_numpy(content) if is_np else content
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
results = results.numpy() if is_np else results
return results[0, 0] if ndim == 1 else results[0] if ndim == 2 else results
def post_process(self, x, sample_rate, f0, pad_to):
f0 = (torch.from_numpy(f0).float().to(x.device) if isinstance(f0, np.ndarray) else f0)
f0 = self.repeat_expand(f0, pad_to) if pad_to is not None else f0
vuv_vector = torch.zeros_like(f0)
vuv_vector[f0 > 0.0] = 1.0
vuv_vector[f0 <= 0.0] = 0.0
nzindex = torch.nonzero(f0).squeeze()
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
time_org = self.hop_length / sample_rate * nzindex.cpu().numpy()
time_frame = np.arange(pad_to) * self.hop_length / sample_rate
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
if f0.shape[0] <= 0: return np.zeros(pad_to), vuv_vector.cpu().numpy()
if f0.shape[0] == 1: return np.ones(pad_to) * f0[0], vuv_vector.cpu().numpy()
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
return f0, vuv_vector.cpu().numpy()
def compute_f0(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
p_len = x.shape[0] // self.hop_length if p_len is None else p_len
f0 = self.fcpe(x, sr=self.sample_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0): return f0.cpu().numpy() if p_len is None else np.zeros(p_len), (f0.cpu().numpy() if p_len is None else np.zeros(p_len))
return self.post_process(x, self.sample_rate, f0, p_len)[0]
def compute_f0_uv(self, wav, p_len=None):
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
p_len = x.shape[0] // self.hop_length if p_len is None else p_len
f0 = self.fcpe(x, sr=self.sample_rate, threshold=self.threshold)[0, :, 0]
if torch.all(f0 == 0): return f0.cpu().numpy() if p_len is None else np.zeros(p_len), (f0.cpu().numpy() if p_len is None else np.zeros(p_len))
return self.post_process(x, self.sample_rate, f0, p_len)