Spaces:
Build error
Build error
import os | |
import sys | |
import time | |
import json | |
import yaml | |
import torch | |
import codecs | |
import hashlib | |
import logging | |
import platform | |
import warnings | |
import requests | |
import subprocess | |
import onnxruntime as ort | |
from tqdm import tqdm | |
from importlib import metadata, import_module | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from main.configs.config import Config | |
translations = Config().translations | |
class Separator: | |
def __init__(self, log_level=logging.INFO, log_formatter=None, model_file_dir="assets/model/uvr5", output_dir=None, output_format="wav", output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False}, demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True}): | |
self.logger = logging.getLogger(__name__) | |
self.logger.setLevel(log_level) | |
self.log_level = log_level | |
self.log_formatter = log_formatter | |
self.log_handler = logging.StreamHandler() | |
if self.log_formatter is None: self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s") | |
self.log_handler.setFormatter(self.log_formatter) | |
if not self.logger.hasHandlers(): self.logger.addHandler(self.log_handler) | |
if log_level > logging.DEBUG: warnings.filterwarnings("ignore") | |
self.logger.info(translations["separator_info"].format(output_dir=output_dir, output_format=output_format)) | |
self.model_file_dir = model_file_dir | |
if output_dir is None: | |
output_dir = os.getcwd() | |
self.logger.info(translations["output_dir_is_none"]) | |
self.output_dir = output_dir | |
os.makedirs(self.model_file_dir, exist_ok=True) | |
os.makedirs(self.output_dir, exist_ok=True) | |
self.output_format = output_format | |
self.output_bitrate = output_bitrate | |
if self.output_format is None: self.output_format = "wav" | |
self.normalization_threshold = normalization_threshold | |
if normalization_threshold <= 0 or normalization_threshold > 1: raise ValueError(translations[">0or=1"]) | |
self.output_single_stem = output_single_stem | |
if output_single_stem is not None: self.logger.debug(translations["output_single"].format(output_single_stem=output_single_stem)) | |
self.invert_using_spec = invert_using_spec | |
if self.invert_using_spec: self.logger.debug(translations["step2"]) | |
try: | |
self.sample_rate = int(sample_rate) | |
if self.sample_rate <= 0: raise ValueError(translations["other_than_zero"].format(sample_rate=self.sample_rate)) | |
if self.sample_rate > 12800000: raise ValueError(translations["too_high"].format(sample_rate=self.sample_rate)) | |
except ValueError: | |
raise ValueError(translations["sr_not_valid"]) | |
self.arch_specific_params = {"MDX": mdx_params, "Demucs": demucs_params} | |
self.torch_device = None | |
self.torch_device_cpu = None | |
self.torch_device_mps = None | |
self.onnx_execution_provider = None | |
self.model_instance = None | |
self.model_is_uvr_vip = False | |
self.model_friendly_name = None | |
self.setup_accelerated_inferencing_device() | |
def setup_accelerated_inferencing_device(self): | |
system_info = self.get_system_info() | |
self.check_ffmpeg_installed() | |
self.log_onnxruntime_packages() | |
self.setup_torch_device(system_info) | |
def get_system_info(self): | |
os_name = platform.system() | |
os_version = platform.version() | |
self.logger.info(f"{translations['os']}: {os_name} {os_version}") | |
system_info = platform.uname() | |
self.logger.info(translations["platform_info"].format(system_info=system_info, node=system_info.node, release=system_info.release, machine=system_info.machine, processor=system_info.processor)) | |
python_version = platform.python_version() | |
self.logger.info(f"{translations['name_ver'].format(name='python')}: {python_version}") | |
pytorch_version = torch.__version__ | |
self.logger.info(f"{translations['name_ver'].format(name='pytorch')}: {pytorch_version}") | |
return system_info | |
def check_ffmpeg_installed(self): | |
try: | |
ffmpeg_version_output = subprocess.check_output(["ffmpeg", "-version"], text=True) | |
first_line = ffmpeg_version_output.splitlines()[0] | |
self.logger.info(f"{translations['install_ffmpeg']}: {first_line}") | |
except FileNotFoundError: | |
self.logger.error(translations["none_ffmpeg"]) | |
if "PYTEST_CURRENT_TEST" not in os.environ: raise | |
def log_onnxruntime_packages(self): | |
onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu") | |
onnxruntime_cpu_package = self.get_package_distribution("onnxruntime") | |
if onnxruntime_gpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='GPU')}: {onnxruntime_gpu_package.version}") | |
if onnxruntime_cpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='CPU')}: {onnxruntime_cpu_package.version}") | |
def setup_torch_device(self, system_info): | |
hardware_acceleration_enabled = False | |
ort_providers = ort.get_available_providers() | |
self.torch_device_cpu = torch.device("cpu") | |
if torch.cuda.is_available(): | |
self.configure_cuda(ort_providers) | |
hardware_acceleration_enabled = True | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm": | |
self.configure_mps(ort_providers) | |
hardware_acceleration_enabled = True | |
if not hardware_acceleration_enabled: | |
self.logger.info(translations["running_in_cpu"]) | |
self.torch_device = self.torch_device_cpu | |
self.onnx_execution_provider = ["CPUExecutionProvider"] | |
def configure_cuda(self, ort_providers): | |
self.logger.info(translations["running_in_cuda"]) | |
self.torch_device = torch.device("cuda") | |
if "CUDAExecutionProvider" in ort_providers: | |
self.logger.info(translations["onnx_have"].format(have='CUDAExecutionProvider')) | |
self.onnx_execution_provider = ["CUDAExecutionProvider"] | |
else: self.logger.warning(translations["onnx_not_have"].format(have='CUDAExecutionProvider')) | |
def configure_mps(self, ort_providers): | |
self.logger.info("Cài đặt thiết bị Torch thành MPS") | |
self.torch_device_mps = torch.device("mps") | |
self.torch_device = self.torch_device_mps | |
if "CoreMLExecutionProvider" in ort_providers: | |
self.logger.info(translations["onnx_have"].format(have='CoreMLExecutionProvider')) | |
self.onnx_execution_provider = ["CoreMLExecutionProvider"] | |
else: self.logger.warning(translations["onnx_not_have"].format(have='CoreMLExecutionProvider')) | |
def get_package_distribution(self, package_name): | |
try: | |
return metadata.distribution(package_name) | |
except metadata.PackageNotFoundError: | |
self.logger.debug(translations["python_not_install"].format(package_name=package_name)) | |
return None | |
def get_model_hash(self, model_path): | |
self.logger.debug(translations["hash"].format(model_path=model_path)) | |
try: | |
with open(model_path, "rb") as f: | |
f.seek(-10000 * 1024, 2) | |
return hashlib.md5(f.read()).hexdigest() | |
except IOError as e: | |
self.logger.error(translations["ioerror"].format(e=e)) | |
return hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
def download_file_if_not_exists(self, url, output_path): | |
if os.path.isfile(output_path): | |
self.logger.debug(translations["cancel_download"].format(output_path=output_path)) | |
return | |
self.logger.debug(translations["download_model"].format(url=url, output_path=output_path)) | |
response = requests.get(url, stream=True, timeout=300) | |
if response.status_code == 200: | |
total_size_in_bytes = int(response.headers.get("content-length", 0)) | |
progress_bar = tqdm(total=total_size_in_bytes) | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
progress_bar.update(len(chunk)) | |
f.write(chunk) | |
progress_bar.close() | |
else: raise RuntimeError(translations["download_error"].format(url=url, status_code=response.status_code)) | |
def print_uvr_vip_message(self): | |
if self.model_is_uvr_vip: | |
self.logger.warning(translations["vip_model"].format(model_friendly_name=self.model_friendly_name)) | |
self.logger.warning(translations["vip_print"]) | |
def list_supported_model_files(self): | |
download_checks_path = os.path.join(self.model_file_dir, "download_checks.json") | |
model_downloads_list = json.load(open(download_checks_path, encoding="utf-8")) | |
self.logger.debug(translations["load_download_json"]) | |
filtered_demucs_v4 = {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")} | |
model_files_grouped_by_type = {"MDX": {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"]}, "Demucs": filtered_demucs_v4} | |
return model_files_grouped_by_type | |
def download_model_files(self, model_filename): | |
model_path = os.path.join(self.model_file_dir, f"{model_filename}") | |
supported_model_files_grouped = self.list_supported_model_files() | |
public_model_repo_url_prefix = codecs.decode("uggcf://tvguho.pbz/GEiyie/zbqry_ercb/eryrnfrf/qbjaybnq/nyy_choyvp_hie_zbqryf", "rot13") | |
vip_model_repo_url_prefix = codecs.decode("uggcf://tvguho.pbz/Nawbx0109/nv_zntvp/eryrnfrf/qbjaybnq/i5", "rot13") | |
audio_separator_models_repo_url_prefix = codecs.decode("uggcf://tvguho.pbz/abznqxnenbxr/clguba-nhqvb-frcnengbe/eryrnfrf/qbjaybnq/zbqry-pbasvtf", "rot13") | |
yaml_config_filename = None | |
self.logger.debug(translations["search_model"].format(model_filename=model_filename)) | |
for model_type, model_list in supported_model_files_grouped.items(): | |
for model_friendly_name, model_download_list in model_list.items(): | |
self.model_is_uvr_vip = "VIP" in model_friendly_name | |
model_repo_url_prefix = vip_model_repo_url_prefix if self.model_is_uvr_vip else public_model_repo_url_prefix | |
if isinstance(model_download_list, str) and model_download_list == model_filename: | |
self.logger.debug(translations["single_model"].format(model_friendly_name=model_friendly_name)) | |
self.model_friendly_name = model_friendly_name | |
try: | |
self.download_file_if_not_exists(f"{model_repo_url_prefix}/{model_filename}", model_path) | |
except RuntimeError: | |
self.logger.debug(translations["not_found_model"]) | |
self.download_file_if_not_exists(f"{audio_separator_models_repo_url_prefix}/{model_filename}", model_path) | |
self.print_uvr_vip_message() | |
self.logger.debug(translations["single_model_path"].format(model_path=model_path)) | |
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename | |
elif isinstance(model_download_list, dict): | |
this_model_matches_input_filename = False | |
for file_name, file_url in model_download_list.items(): | |
if file_name == model_filename or file_url == model_filename: | |
self.logger.debug(translations["find_model"].format(model_filename=model_filename, model_friendly_name=model_friendly_name)) | |
this_model_matches_input_filename = True | |
if this_model_matches_input_filename: | |
self.logger.debug(translations["find_models"].format(model_friendly_name=model_friendly_name)) | |
self.model_friendly_name = model_friendly_name | |
self.print_uvr_vip_message() | |
for config_key, config_value in model_download_list.items(): | |
self.logger.debug(f"{translations['find_path']}: {config_key} -> {config_value}") | |
if config_value.startswith("http"): self.download_file_if_not_exists(config_value, os.path.join(self.model_file_dir, config_key)) | |
elif config_key.endswith(".ckpt"): | |
try: | |
download_url = f"{model_repo_url_prefix}/{config_key}" | |
self.download_file_if_not_exists(download_url, os.path.join(self.model_file_dir, config_key)) | |
except RuntimeError: | |
self.logger.debug(translations["not_found_model_warehouse"]) | |
download_url = f"{audio_separator_models_repo_url_prefix}/{config_key}" | |
self.download_file_if_not_exists(download_url, os.path.join(self.model_file_dir, config_key)) | |
if model_filename.endswith(".yaml"): | |
self.logger.warning(translations["yaml_warning"].format(model_filename=model_filename)) | |
self.logger.warning(translations["yaml_warning_2"].format(config_key=config_key)) | |
self.logger.warning(translations["yaml_warning_3"]) | |
model_filename = config_key | |
model_path = os.path.join(self.model_file_dir, f"{model_filename}") | |
yaml_config_filename = config_value | |
yaml_config_filepath = os.path.join(self.model_file_dir, yaml_config_filename) | |
try: | |
url = codecs.decode("uggcf://enj.tvguhohfrepbagrag.pbz/GEiyie/nccyvpngvba_qngn/znva/zqk_zbqry_qngn/zqk_p_pbasvtf", "rot13") | |
yaml_config_url = f"{url}/{yaml_config_filename}" | |
self.download_file_if_not_exists(f"{yaml_config_url}", yaml_config_filepath) | |
except RuntimeError: | |
self.logger.debug(translations["yaml_debug"]) | |
yaml_config_url = f"{audio_separator_models_repo_url_prefix}/{yaml_config_filename}" | |
self.download_file_if_not_exists(f"{yaml_config_url}", yaml_config_filepath) | |
else: | |
download_url = f"{model_repo_url_prefix}/{config_value}" | |
self.download_file_if_not_exists(download_url, os.path.join(self.model_file_dir, config_value)) | |
self.logger.debug(translations["download_model_friendly"].format(model_friendly_name=model_friendly_name, model_path=model_path)) | |
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename | |
raise ValueError(translations["not_found_model_2"].format(model_filename=model_filename)) | |
def load_model_data_from_yaml(self, yaml_config_filename): | |
model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename) if not os.path.exists(yaml_config_filename) else yaml_config_filename | |
self.logger.debug(translations["load_yaml"].format(model_data_yaml_filepath=model_data_yaml_filepath)) | |
model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader) | |
self.logger.debug(translations["load_yaml_2"].format(model_data=model_data)) | |
if "roformer" in model_data_yaml_filepath: model_data["is_roformer"] = True | |
return model_data | |
def load_model_data_using_hash(self, model_path): | |
mdx_model_data_url = codecs.decode("uggcf://enj.tvguhohfrepbagrag.pbz/GEiyie/nccyvpngvba_qngn/znva/zqk_zbqry_qngn/zbqry_qngn_arj.wfba", "rot13") | |
self.logger.debug(translations["hash_md5"]) | |
model_hash = self.get_model_hash(model_path) | |
self.logger.debug(translations["model_hash"].format(model_path=model_path, model_hash=model_hash)) | |
mdx_model_data_path = os.path.join(self.model_file_dir, "mdx_model_data.json") | |
self.logger.debug(translations["mdx_data"].format(mdx_model_data_path=mdx_model_data_path)) | |
self.download_file_if_not_exists(mdx_model_data_url, mdx_model_data_path) | |
self.logger.debug(translations["load_mdx"]) | |
mdx_model_data_object = json.load(open(mdx_model_data_path, encoding="utf-8")) | |
if model_hash in mdx_model_data_object: model_data = mdx_model_data_object[model_hash] | |
else: raise ValueError(translations["model_not_support"].format(model_hash=model_hash)) | |
self.logger.debug(translations["uvr_json"].format(model_hash=model_hash, model_data=model_data)) | |
return model_data | |
def load_model(self, model_filename): | |
self.logger.info(translations["loading_model"].format(model_filename=model_filename)) | |
load_model_start_time = time.perf_counter() | |
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename) | |
model_name = model_filename.split(".")[0] | |
self.logger.debug(translations["download_model_friendly_2"].format(model_friendly_name=model_friendly_name, model_path=model_path)) | |
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path | |
model_data = self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path) | |
common_params = { | |
"logger": self.logger, | |
"log_level": self.log_level, | |
"torch_device": self.torch_device, | |
"torch_device_cpu": self.torch_device_cpu, | |
"torch_device_mps": self.torch_device_mps, | |
"onnx_execution_provider": self.onnx_execution_provider, | |
"model_name": model_name, | |
"model_path": model_path, | |
"model_data": model_data, | |
"output_format": self.output_format, | |
"output_bitrate": self.output_bitrate, | |
"output_dir": self.output_dir, | |
"normalization_threshold": self.normalization_threshold, | |
"output_single_stem": self.output_single_stem, | |
"invert_using_spec": self.invert_using_spec, | |
"sample_rate": self.sample_rate, | |
} | |
separator_classes = {"MDX": "mdx_separator.MDXSeparator", "Demucs": "demucs_separator.DemucsSeparator"} | |
if model_type not in self.arch_specific_params or model_type not in separator_classes: raise ValueError(translations["model_type_not_support"].format(model_type=model_type)) | |
if model_type == "Demucs" and sys.version_info < (3, 10): raise Exception(translations["demucs_not_support_python<3.10"]) | |
self.logger.debug(f"{translations['import_module']} {model_type}: {separator_classes[model_type]}") | |
module_name, class_name = separator_classes[model_type].split(".") | |
module = import_module(f"main.library.architectures.{module_name}") | |
separator_class = getattr(module, class_name) | |
self.logger.debug(f"{translations['initialization']} {model_type}: {separator_class}") | |
self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type]) | |
self.logger.debug(translations["loading_model_success"]) | |
self.logger.info(f"{translations['loading_model_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - load_model_start_time)))}") | |
def separate(self, audio_file_path): | |
self.logger.info(f"{translations['starting_separator']}: {audio_file_path}") | |
separate_start_time = time.perf_counter() | |
self.logger.debug(translations["normalization"].format(normalization_threshold=self.normalization_threshold)) | |
output_files = self.model_instance.separate(audio_file_path) | |
self.model_instance.clear_gpu_cache() | |
self.model_instance.clear_file_specific_paths() | |
self.print_uvr_vip_message() | |
self.logger.debug(translations["separator_success_3"]) | |
self.logger.info(f"{translations['separator_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - separate_start_time)))}") | |
return output_files | |
def download_model_and_data(self, model_filename): | |
self.logger.info(translations["loading_separator_model"].format(model_filename=model_filename)) | |
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename) | |
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path | |
model_data = self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path) | |
model_data_dict_size = len(model_data) | |
self.logger.info(translations["downloading_model"].format(model_type=model_type, model_friendly_name=model_friendly_name, model_path=model_path, model_data_dict_size=model_data_dict_size)) |