Spaces:
Build error
Build error
| import os | |
| import sys | |
| import torch | |
| from typing import Optional | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils.parametrizations import weight_norm | |
| now_dir = os.getcwd() | |
| sys.path.append(now_dir) | |
| from .modules import WaveNet | |
| from .commons import get_padding, init_weights | |
| LRELU_SLOPE = 0.1 | |
| def create_conv1d_layer(channels, kernel_size, dilation): | |
| return weight_norm(torch.nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation, padding=get_padding(kernel_size, dilation))) | |
| def apply_mask(tensor, mask): | |
| return tensor * mask if mask is not None else tensor | |
| class ResBlockBase(torch.nn.Module): | |
| def __init__(self, channels, kernel_size, dilations): | |
| super(ResBlockBase, self).__init__() | |
| self.convs1 = torch.nn.ModuleList([create_conv1d_layer(channels, kernel_size, d) for d in dilations]) | |
| self.convs1.apply(init_weights) | |
| self.convs2 = torch.nn.ModuleList([create_conv1d_layer(channels, kernel_size, 1) for _ in dilations]) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x, x_mask=None): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE) | |
| xt = apply_mask(xt, x_mask) | |
| xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE) | |
| xt = apply_mask(xt, x_mask) | |
| xt = c2(xt) | |
| x = xt + x | |
| return apply_mask(x, x_mask) | |
| def remove_weight_norm(self): | |
| for conv in self.convs1 + self.convs2: | |
| remove_weight_norm(conv) | |
| class ResBlock1(ResBlockBase): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super(ResBlock1, self).__init__(channels, kernel_size, dilation) | |
| class ResBlock2(ResBlockBase): | |
| def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
| super(ResBlock2, self).__init__(channels, kernel_size, dilation) | |
| class Log(torch.nn.Module): | |
| def forward(self, x, x_mask, reverse=False, **kwargs): | |
| if not reverse: | |
| y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask | |
| logdet = torch.sum(-y, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = torch.exp(x) * x_mask | |
| return x | |
| class Flip(torch.nn.Module): | |
| def forward(self, x, *args, reverse=False, **kwargs): | |
| x = torch.flip(x, [1]) | |
| if not reverse: | |
| logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | |
| return x, logdet | |
| else: return x | |
| class ElementwiseAffine(torch.nn.Module): | |
| def __init__(self, channels): | |
| super().__init__() | |
| self.channels = channels | |
| self.m = torch.nn.Parameter(torch.zeros(channels, 1)) | |
| self.logs = torch.nn.Parameter(torch.zeros(channels, 1)) | |
| def forward(self, x, x_mask, reverse=False, **kwargs): | |
| if not reverse: | |
| y = self.m + torch.exp(self.logs) * x | |
| y = y * x_mask | |
| logdet = torch.sum(self.logs * x_mask, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = (x - self.m) * torch.exp(-self.logs) * x_mask | |
| return x | |
| class ResidualCouplingBlock(torch.nn.Module): | |
| def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): | |
| super(ResidualCouplingBlock, self).__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.n_flows = n_flows | |
| self.gin_channels = gin_channels | |
| self.flows = torch.nn.ModuleList() | |
| for i in range(n_flows): | |
| self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True)) | |
| self.flows.append(Flip()) | |
| def forward(self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None, reverse = False): | |
| if not reverse: | |
| for flow in self.flows: | |
| x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
| else: | |
| for flow in reversed(self.flows): | |
| x = flow.forward(x, x_mask, g=g, reverse=reverse) | |
| return x | |
| def remove_weight_norm(self): | |
| for i in range(self.n_flows): | |
| self.flows[i * 2].remove_weight_norm() | |
| def __prepare_scriptable__(self): | |
| for i in range(self.n_flows): | |
| for hook in self.flows[i * 2]._forward_pre_hooks.values(): | |
| if (hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" and hook.__class__.__name__ == "WeightNorm"): torch.nn.utils.remove_weight_norm(self.flows[i * 2]) | |
| return self | |
| class ResidualCouplingLayer(torch.nn.Module): | |
| def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False): | |
| assert channels % 2 == 0, "Channels/2" | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.half_channels = channels // 2 | |
| self.mean_only = mean_only | |
| self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1) | |
| self.enc = WaveNet(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) | |
| self.post = torch.nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
| self.post.weight.data.zero_() | |
| self.post.bias.data.zero_() | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) * x_mask | |
| h = self.enc(h, x_mask, g=g) | |
| stats = self.post(h) * x_mask | |
| if not self.mean_only: m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
| else: | |
| m = stats | |
| logs = torch.zeros_like(m) | |
| if not reverse: | |
| x1 = m + x1 * torch.exp(logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| logdet = torch.sum(logs, [1, 2]) | |
| return x, logdet | |
| else: | |
| x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| return x | |
| def remove_weight_norm(self): | |
| self.enc.remove_weight_norm() |