Spaces:
Build error
Build error
import os | |
import re | |
import sys | |
import glob | |
import json | |
import torch | |
import logging | |
import hashlib | |
import argparse | |
import datetime | |
import warnings | |
import logging.handlers | |
import numpy as np | |
import torch.utils.data | |
import matplotlib.pyplot as plt | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
from tqdm import tqdm | |
from time import time as ttime | |
from scipy.io.wavfile import read | |
from collections import OrderedDict | |
from random import randint, shuffle | |
from torch.nn import functional as F | |
from distutils.util import strtobool | |
from torch.utils.data import DataLoader | |
from torch.cuda.amp import GradScaler, autocast | |
from torch.utils.tensorboard import SummaryWriter | |
from librosa.filters import mel as librosa_mel_fn | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.nn.utils.parametrizations import spectral_norm, weight_norm | |
current_dir = os.getcwd() | |
sys.path.append(current_dir) | |
from main.configs.config import Config | |
from main.library.algorithm.residuals import LRELU_SLOPE | |
from main.library.algorithm.synthesizers import Synthesizer | |
from main.library.algorithm.commons import get_padding, slice_segments, clip_grad_value | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
warnings.filterwarnings("ignore", category=UserWarning) | |
logging.getLogger("torch").setLevel(logging.ERROR) | |
MATPLOTLIB_FLAG = False | |
translations = Config().translations | |
class HParams: | |
def __init__(self, **kwargs): | |
for k, v in kwargs.items(): | |
self[k] = HParams(**v) if isinstance(v, dict) else v | |
def keys(self): | |
return self.__dict__.keys() | |
def items(self): | |
return self.__dict__.items() | |
def values(self): | |
return self.__dict__.values() | |
def __len__(self): | |
return len(self.__dict__) | |
def __getitem__(self, key): | |
return self.__dict__[key] | |
def __setitem__(self, key, value): | |
self.__dict__[key] = value | |
def __contains__(self, key): | |
return key in self.__dict__ | |
def __repr__(self): | |
return repr(self.__dict__) | |
def parse_arguments() -> tuple: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_name", type=str, required=True) | |
parser.add_argument("--rvc_version", type=str, default="v2") | |
parser.add_argument("--save_every_epoch", type=int, required=True) | |
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--total_epoch", type=int, default=300) | |
parser.add_argument("--sample_rate", type=int, required=True) | |
parser.add_argument("--batch_size", type=int, default=8) | |
parser.add_argument("--gpu", type=str, default="0") | |
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True) | |
parser.add_argument("--g_pretrained_path", type=str, default="") | |
parser.add_argument("--d_pretrained_path", type=str, default="") | |
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--overtraining_threshold", type=int, default=50) | |
parser.add_argument("--sync_graph", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False) | |
parser.add_argument("--model_author", type=str) | |
args = parser.parse_args() | |
return args | |
args = parse_arguments() | |
model_name = args.model_name | |
save_every_epoch = args.save_every_epoch | |
total_epoch = args.total_epoch | |
pretrainG = args.g_pretrained_path | |
pretrainD = args.d_pretrained_path | |
version = args.rvc_version | |
gpus = args.gpu | |
batch_size = args.batch_size | |
sample_rate = args.sample_rate | |
pitch_guidance = args.pitch_guidance | |
save_only_latest = args.save_only_latest | |
save_every_weights = args.save_every_weights | |
cache_data_in_gpu = args.cache_data_in_gpu | |
overtraining_detector = args.overtraining_detector | |
overtraining_threshold = args.overtraining_threshold | |
sync_graph = args.sync_graph | |
model_author = args.model_author | |
experiment_dir = os.path.join(current_dir, "assets", "logs", model_name) | |
config_save_path = os.path.join(experiment_dir, "config.json") | |
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",") | |
n_gpus = len(gpus.split("-")) | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.benchmark = False | |
global_step = 0 | |
last_loss_gen_all = 0 | |
overtrain_save_epoch = 0 | |
loss_gen_history = [] | |
smoothed_loss_gen_history = [] | |
loss_disc_history = [] | |
smoothed_loss_disc_history = [] | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
training_file_path = os.path.join(experiment_dir, "training_data.json") | |
with open(config_save_path, "r") as f: | |
config = json.load(f) | |
config = HParams(**config) | |
config.data.training_files = os.path.join(experiment_dir, "filelist.txt") | |
log_file = os.path.join(experiment_dir, "train.log") | |
logger = logging.getLogger(__name__) | |
if logger.hasHandlers(): logger.handlers.clear() | |
else: | |
console_handler = logging.StreamHandler() | |
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") | |
console_handler.setFormatter(console_formatter) | |
console_handler.setLevel(logging.INFO) | |
file_handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=5*1024*1024, backupCount=3, encoding='utf-8') | |
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S") | |
file_handler.setFormatter(file_formatter) | |
file_handler.setLevel(logging.DEBUG) | |
logger.addHandler(console_handler) | |
logger.addHandler(file_handler) | |
logger.setLevel(logging.DEBUG) | |
logger.debug(f"{translations['modelname']}: {model_name}") | |
logger.debug(translations["save_every_epoch"].format(save_every_epoch=save_every_epoch)) | |
logger.debug(translations["total_e"].format(total_epoch=total_epoch)) | |
logger.debug(translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD)) | |
logger.debug(f"{translations['training_version']}: {version}") | |
logger.debug(f"Gpu: {gpus}") | |
logger.debug(f"{translations['batch_size']}: {batch_size}") | |
logger.debug(f"{translations['pretrain_sr']}: {sample_rate}") | |
logger.debug(f"{translations['training_f0']}: {pitch_guidance}") | |
logger.debug(f"{translations['save_only_latest']}: {save_only_latest}") | |
logger.debug(f"{translations['save_every_weights']}: {save_every_weights}") | |
logger.debug(f"{translations['cache_in_gpu']}: {cache_data_in_gpu}") | |
logger.debug(f"{translations['overtraining_detector']}: {overtraining_detector}") | |
logger.debug(f"{translations['threshold']}: {overtraining_threshold}") | |
logger.debug(f"{translations['sync_graph']}: {sync_graph}") | |
if not model_author: logger.debug(translations["model_author"].format(model_author=model_author)) | |
def main(): | |
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
n_gpus = torch.cuda.device_count() | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
n_gpus = 1 | |
else: | |
device = torch.device("cpu") | |
n_gpus = 1 | |
def start(): | |
children = [] | |
for i in range(n_gpus): | |
subproc = mp.Process(target=run, args=(i, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author)) | |
children.append(subproc) | |
subproc.start() | |
for i in range(n_gpus): | |
children[i].join() | |
def load_from_json(file_path): | |
if os.path.exists(file_path): | |
with open(file_path, "r") as f: | |
data = json.load(f) | |
return ( | |
data.get("loss_disc_history", []), | |
data.get("smoothed_loss_disc_history", []), | |
data.get("loss_gen_history", []), | |
data.get("smoothed_loss_gen_history", []), | |
) | |
return [], [], [], [] | |
def continue_overtrain_detector(training_file_path): | |
if overtraining_detector: | |
if os.path.exists(training_file_path): | |
( | |
loss_disc_history, | |
smoothed_loss_disc_history, | |
loss_gen_history, | |
smoothed_loss_gen_history, | |
) = load_from_json(training_file_path) | |
n_gpus = torch.cuda.device_count() | |
if not torch.cuda.is_available() and torch.backends.mps.is_available(): n_gpus = 1 | |
if n_gpus < 1: | |
logger.warning(translations["not_gpu"]) | |
n_gpus = 1 | |
if sync_graph: | |
logger.debug(translations["sync"]) | |
custom_total_epoch = 1 | |
custom_save_every_weights = True | |
start() | |
model_config_file = os.path.join(experiment_dir, "config.json") | |
rvc_config_file = os.path.join(current_dir, "main", "configs", version, str(sample_rate) + ".json") | |
if not os.path.exists(rvc_config_file): rvc_config_file = os.path.join(current_dir, "main", "configs", "v1", str(sample_rate) + ".json") | |
pattern = rf"{os.path.basename(model_name)}_(\d+)e_(\d+)s\.pth" | |
for filename in os.listdir(os.path.join("assets", "weights")): | |
match = re.match(pattern, filename) | |
if match: steps = int(match.group(2)) | |
def edit_config(config_file): | |
with open(config_file, "r", encoding="utf8") as json_file: | |
config_data = json.load(json_file) | |
config_data["train"]["log_interval"] = steps | |
with open(config_file, "w", encoding="utf8") as json_file: | |
json.dump(config_data, json_file, indent=2, separators=(",", ": "), ensure_ascii=False) | |
edit_config(model_config_file) | |
edit_config(rvc_config_file) | |
for root, dirs, files in os.walk(experiment_dir, topdown=False): | |
for name in files: | |
file_path = os.path.join(root, name) | |
_, file_extension = os.path.splitext(name) | |
if file_extension == ".0": os.remove(file_path) | |
elif ("D" in name or "G" in name) and file_extension == ".pth": os.remove(file_path) | |
elif ("added" in name or "trained" in name) and file_extension == ".index": os.remove(file_path) | |
for name in dirs: | |
if name == "eval": | |
folder_path = os.path.join(root, name) | |
for item in os.listdir(folder_path): | |
item_path = os.path.join(folder_path, item) | |
if os.path.isfile(item_path): os.remove(item_path) | |
os.rmdir(folder_path) | |
logger.info(translations["sync_success"]) | |
custom_total_epoch = total_epoch | |
custom_save_every_weights = save_every_weights | |
continue_overtrain_detector(training_file_path) | |
start() | |
else: | |
custom_total_epoch = total_epoch | |
custom_save_every_weights = save_every_weights | |
continue_overtrain_detector(training_file_path) | |
start() | |
def plot_spectrogram_to_numpy(spectrogram): | |
global MATPLOTLIB_FLAG | |
if not MATPLOTLIB_FLAG: | |
plt.switch_backend("Agg") | |
MATPLOTLIB_FLAG = True | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
plt.colorbar(im, ax=ax) | |
plt.xlabel("Frames") | |
plt.ylabel("Channels") | |
plt.tight_layout() | |
fig.canvas.draw() | |
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close(fig) | |
return data | |
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sample_rate=22050): | |
for k, v in scalars.items(): | |
writer.add_scalar(k, v, global_step) | |
for k, v in histograms.items(): | |
writer.add_histogram(k, v, global_step) | |
for k, v in images.items(): | |
writer.add_image(k, v, global_step, dataformats="HWC") | |
for k, v in audios.items(): | |
writer.add_audio(k, v, global_step, audio_sample_rate) | |
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): | |
assert os.path.isfile(checkpoint_path), translations["not_found_checkpoint"].format(checkpoint_path=checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
checkpoint_dict = replace_keys_in_dict(replace_keys_in_dict(checkpoint_dict, ".weight_v", ".parametrizations.weight.original1"), ".weight_g", ".parametrizations.weight.original0") | |
model_state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict()) | |
new_state_dict = {k: checkpoint_dict["model"].get(k, v) for k, v in model_state_dict.items()} | |
if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False) | |
else: model.load_state_dict(new_state_dict, strict=False) | |
if optimizer and load_opt == 1: optimizer.load_state_dict(checkpoint_dict.get("optimizer", {})) | |
logger.debug(translations["save_checkpoint"].format(checkpoint_path=checkpoint_path, checkpoint_dict=checkpoint_dict['iteration'])) | |
return ( | |
model, | |
optimizer, | |
checkpoint_dict.get("learning_rate", 0), | |
checkpoint_dict["iteration"], | |
) | |
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict()) | |
checkpoint_data = { | |
"model": state_dict, | |
"iteration": iteration, | |
"optimizer": optimizer.state_dict(), | |
"learning_rate": learning_rate, | |
} | |
torch.save(checkpoint_data, checkpoint_path) | |
old_version_path = checkpoint_path.replace(".pth", "_old_version.pth") | |
checkpoint_data = replace_keys_in_dict(replace_keys_in_dict(checkpoint_data, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g") | |
torch.save(checkpoint_data, old_version_path) | |
os.replace(old_version_path, checkpoint_path) | |
logger.info(translations["save_model"].format(checkpoint_path=checkpoint_path, iteration=iteration)) | |
def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
checkpoints = sorted(glob.glob(os.path.join(dir_path, regex)), key=lambda f: int("".join(filter(str.isdigit, f)))) | |
return checkpoints[-1] if checkpoints else None | |
def load_wav_to_torch(full_path): | |
sample_rate, data = read(full_path) | |
return torch.FloatTensor(data.astype(np.float32)), sample_rate | |
def load_filepaths_and_text(filename, split="|"): | |
with open(filename, encoding="utf-8") as f: | |
return [line.strip().split(split) for line in f] | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
rl = rl.float().detach() | |
gl = gl.float() | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss * 2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
dr = dr.float() | |
dg = dg.float() | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg**2) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
return loss, r_losses, g_losses | |
def generator_loss(disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
for dg in disc_outputs: | |
dg = dg.float() | |
l = torch.mean((1 - dg) ** 2) | |
gen_losses.append(l) | |
loss += l | |
return loss, gen_losses | |
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): | |
z_p = z_p.float() | |
logs_q = logs_q.float() | |
m_p = m_p.float() | |
logs_p = logs_p.float() | |
z_mask = z_mask.float() | |
kl = logs_p - logs_q - 0.5 | |
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) | |
kl = torch.sum(kl * z_mask) | |
l = kl / torch.sum(z_mask) | |
return l | |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset): | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as e: | |
logger.error(translations["sid_error"].format(sid=sid, e=e)) | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
pitch = audiopath_and_text[2] | |
pitchf = audiopath_and_text[3] | |
dv = audiopath_and_text[4] | |
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
pitch = pitch[:len_min] | |
pitchf = pitchf[:len_min] | |
return (spec, wav, phone, pitch, pitchf, dv) | |
def get_labels(self, phone, pitch, pitchf): | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
pitch = np.load(pitch) | |
pitchf = np.load(pitchf) | |
n_num = min(phone.shape[0], 900) | |
phone = phone[:n_num, :] | |
pitch = pitch[:n_num] | |
pitchf = pitchf[:n_num] | |
phone = torch.FloatTensor(phone) | |
pitch = torch.LongTensor(pitch) | |
pitchf = torch.FloatTensor(pitchf) | |
return phone, pitch, pitchf | |
def get_audio(self, filename): | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as e: | |
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollateMultiNSFsid: | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) | |
pitch_padded = torch.LongTensor(len(batch), max_phone_len) | |
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len) | |
phone_padded.zero_() | |
pitch_padded.zero_() | |
pitchf_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
pitch = row[3] | |
pitch_padded[i, : pitch.size(0)] = pitch | |
pitchf = row[4] | |
pitchf_padded[i, : pitchf.size(0)] = pitchf | |
sid[i] = row[5] | |
return ( | |
phone_padded, | |
phone_lengths, | |
pitch_padded, | |
pitchf_padded, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
sid, | |
) | |
class TextAudioLoader(torch.utils.data.Dataset): | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for entry in self.audiopaths_and_text: | |
if len(entry) >= 3: | |
audiopath, text, dv = entry[:3] | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as e: | |
logger.error(translations["sid_error"].format(sid=sid, e=e)) | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
dv = audiopath_and_text[2] | |
phone = self.get_labels(phone) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
return (spec, wav, phone, dv) | |
def get_labels(self, phone): | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
n_num = min(phone.shape[0], 900) | |
phone = phone[:n_num, :] | |
phone = torch.FloatTensor(phone) | |
return phone | |
def get_audio(self, filename): | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate)) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as e: | |
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e)) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollate: | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1]) | |
phone_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
sid[i] = row[3] | |
return ( | |
phone_padded, | |
phone_lengths, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
sid, | |
) | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, -1, -1): | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)]) | |
ids_bucket = ids_bucket[self.rank :: self.num_replicas] | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid | |
elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid) | |
else: return self._bisect(x, mid + 1, hi) | |
else: return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
periods = [2, 3, 5, 7, 11, 17] | |
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods]) | |
def forward(self, y, y_hat): | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class MultiPeriodDiscriminatorV2(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminatorV2, self).__init__() | |
periods = [2, 3, 5, 7, 11, 17, 23, 37] | |
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm) for p in periods]) | |
def forward(self, y, y_hat): | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2))]) | |
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1)) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
fmap = [] | |
for conv in self.convs: | |
x = self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = spectral_norm if use_spectral_norm else weight_norm | |
in_channels = [1, 32, 128, 512, 1024] | |
out_channels = [32, 128, 512, 1024, 1024] | |
self.convs = torch.nn.ModuleList( | |
[ | |
norm_f( | |
torch.nn.Conv2d( | |
in_ch, | |
out_ch, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
) | |
for in_ch, out_ch in zip(in_channels, out_channels) | |
] | |
) | |
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE) | |
def forward(self, x): | |
fmap = [] | |
b, c, t = x.shape | |
if t % self.period != 0: | |
n_pad = self.period - (t % self.period) | |
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
x = x.view(b, c, -1, self.period) | |
for conv in self.convs: | |
x = self.lrelu(conv(x)) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class EpochRecorder: | |
def __init__(self): | |
self.last_time = ttime() | |
def record(self): | |
now_time = ttime() | |
elapsed_time = now_time - self.last_time | |
self.last_time = now_time | |
elapsed_time = round(elapsed_time, 1) | |
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time))) | |
current_time = datetime.datetime.now().strftime("%H:%M:%S") | |
return translations["time_or_speed_training"].format(current_time=current_time, elapsed_time_str=elapsed_time_str) | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
return dynamic_range_compression_torch(magnitudes) | |
def spectral_de_normalize_torch(magnitudes): | |
return dynamic_range_decompression_torch(magnitudes) | |
mel_basis = {} | |
hann_window = {} | |
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): | |
global hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect") | |
y = y.squeeze(1) | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True) | |
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) | |
return spec | |
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): | |
global mel_basis | |
dtype_device = str(spec.dtype) + "_" + str(spec.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) | |
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
melspec = spectral_normalize_torch(melspec) | |
return melspec | |
def mel_spectrogram_torch(y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False): | |
spec = spectrogram_torch(y, n_fft, hop_size, win_size, center) | |
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax) | |
return melspec | |
def replace_keys_in_dict(d, old_key_part, new_key_part): | |
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {} | |
for key, value in d.items(): | |
new_key = (key.replace(old_key_part, new_key_part) if isinstance(key, str) else key) | |
updated_dict[new_key] = (replace_keys_in_dict(value, old_key_part, new_key_part) if isinstance(value, dict) else value) | |
return updated_dict | |
def extract_model(ckpt, sr, pitch_guidance, name, model_dir, epoch, step, version, hps, model_author): | |
try: | |
logger.info(translations["savemodel"].format(model_dir=model_dir, epoch=epoch, step=step)) | |
model_dir_path = os.path.join("assets", "weights") | |
if "best_epoch" in model_dir: pth_file = f"{name}_{epoch}e_{step}s_best_epoch.pth" | |
else: pth_file = f"{name}_{epoch}e_{step}s.pth" | |
pth_file_old_version_path = os.path.join(model_dir_path, f"{pth_file}_old_version.pth") | |
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key}) | |
opt["config"] = [ | |
hps.data.filter_length // 2 + 1, | |
32, | |
hps.model.inter_channels, | |
hps.model.hidden_channels, | |
hps.model.filter_channels, | |
hps.model.n_heads, | |
hps.model.n_layers, | |
hps.model.kernel_size, | |
hps.model.p_dropout, | |
hps.model.resblock, | |
hps.model.resblock_kernel_sizes, | |
hps.model.resblock_dilation_sizes, | |
hps.model.upsample_rates, | |
hps.model.upsample_initial_channel, | |
hps.model.upsample_kernel_sizes, | |
hps.model.spk_embed_dim, | |
hps.model.gin_channels, | |
hps.data.sample_rate, | |
] | |
opt["epoch"] = f"{epoch}epoch" | |
opt["step"] = step | |
opt["sr"] = sr | |
opt["f0"] = int(pitch_guidance) | |
opt["version"] = version | |
opt["creation_date"] = datetime.datetime.now().isoformat() | |
hash_input = f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}" | |
model_hash = hashlib.sha256(hash_input.encode()).hexdigest() | |
opt["model_hash"] = model_hash | |
opt["model_name"] = name | |
opt["author"] = model_author | |
torch.save(opt, os.path.join(model_dir_path, pth_file)) | |
model = torch.load(model_dir, map_location=torch.device("cpu")) | |
torch.save(replace_keys_in_dict(replace_keys_in_dict(model, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), pth_file_old_version_path) | |
os.remove(model_dir) | |
os.rename(pth_file_old_version_path, model_dir) | |
except Exception as e: | |
logger.error(f"{translations['extract_model_error']}: {e}") | |
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author): | |
global global_step | |
if rank == 0: | |
writer = SummaryWriter(log_dir=experiment_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval")) | |
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank) | |
torch.manual_seed(config.train.seed) | |
if torch.cuda.is_available(): torch.cuda.set_device(rank) | |
train_dataset = TextAudioLoaderMultiNSFsid(config.data) | |
train_sampler = DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True) | |
collate_fn = TextAudioCollateMultiNSFsid() | |
train_loader = DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=collate_fn, batch_sampler=train_sampler, persistent_workers=True, prefetch_factor=8) | |
net_g = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance == True, is_half=config.train.fp16_run and device.type == "cuda", sr=sample_rate).to(device) | |
if torch.cuda.is_available(): net_g = net_g.cuda(rank) | |
if version == "v1": net_d = MultiPeriodDiscriminator(config.model.use_spectral_norm) | |
else: net_d = MultiPeriodDiscriminatorV2(config.model.use_spectral_norm) | |
if torch.cuda.is_available(): net_d = net_d.cuda(rank) | |
optim_g = torch.optim.AdamW(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps) | |
optim_d = torch.optim.AdamW(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps) | |
if torch.cuda.is_available(): | |
net_g = DDP(net_g, device_ids=[rank]) | |
net_d = DDP(net_d, device_ids=[rank]) | |
else: | |
net_g = DDP(net_g) | |
net_d = DDP(net_d) | |
try: | |
logger.info(translations["start_training"]) | |
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(experiment_dir, "D_*.pth"), net_d, optim_d) | |
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(experiment_dir, "G_*.pth"), net_g, optim_g) | |
epoch_str += 1 | |
global_step = (epoch_str - 1) * len(train_loader) | |
except: | |
epoch_str = 1 | |
global_step = 0 | |
if pretrainG != "": | |
if rank == 0: logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG)) | |
if hasattr(net_g, "module"): net_g.module.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) | |
else: net_g.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"]) | |
else: logger.warning(translations["not_using_pretrain"].format(dg="G")) | |
if pretrainD != "": | |
if rank == 0: logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD)) | |
if hasattr(net_d, "module"): net_d.module.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) | |
else: net_d.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"]) | |
else: logger.warning(translations["not_using_pretrain"].format(dg="D")) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2) | |
optim_d.step() | |
optim_g.step() | |
scaler = GradScaler(enabled=config.train.fp16_run) | |
cache = [] | |
for info in train_loader: | |
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info | |
reference = ( | |
phone.to(device), | |
phone_lengths.to(device), | |
pitch.to(device) if pitch_guidance else None, | |
pitchf.to(device) if pitch_guidance else None, | |
sid.to(device), | |
) | |
break | |
for epoch in range(epoch_str, total_epoch + 1): | |
if rank == 0: train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, [train_loader, None], [writer, writer_eval], cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author) | |
else: train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, [train_loader, None], None, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author) | |
scheduler_g.step() | |
scheduler_d.step() | |
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, loaders, writers, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author): | |
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc | |
if epoch == 1: | |
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} | |
last_loss_gen_all = 0.0 | |
consecutive_increases_gen = 0 | |
consecutive_increases_disc = 0 | |
net_g, net_d = nets | |
optim_g, optim_d = optims | |
train_loader = loaders[0] if loaders is not None else None | |
if writers is not None: writer = writers[0] | |
train_loader.batch_sampler.set_epoch(epoch) | |
net_g.train() | |
net_d.train() | |
if device.type == "cuda" and cache_data_in_gpu: | |
data_iterator = cache | |
if cache == []: | |
for batch_idx, info in enumerate(train_loader): | |
( | |
phone, | |
phone_lengths, | |
pitch, | |
pitchf, | |
spec, | |
spec_lengths, | |
wave, | |
wave_lengths, | |
sid, | |
) = info | |
cache.append( | |
(batch_idx, ( | |
phone.cuda(rank, non_blocking=True), | |
phone_lengths.cuda(rank, non_blocking=True), | |
(pitch.cuda(rank, non_blocking=True) if pitch_guidance else None), | |
(pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None), | |
spec.cuda(rank, non_blocking=True), | |
spec_lengths.cuda(rank, non_blocking=True), | |
wave.cuda(rank, non_blocking=True), | |
wave_lengths.cuda(rank, non_blocking=True), | |
sid.cuda(rank, non_blocking=True), | |
), | |
)) | |
else: shuffle(cache) | |
else: data_iterator = enumerate(train_loader) | |
epoch_recorder = EpochRecorder() | |
with tqdm(total=len(train_loader), leave=False) as pbar: | |
for batch_idx, info in data_iterator: | |
( | |
phone, | |
phone_lengths, | |
pitch, | |
pitchf, | |
spec, | |
spec_lengths, | |
wave, | |
wave_lengths, | |
sid, | |
) = info | |
if device.type == "cuda" and not cache_data_in_gpu: | |
phone = phone.cuda(rank, non_blocking=True) | |
phone_lengths = phone_lengths.cuda(rank, non_blocking=True) | |
pitch = pitch.cuda(rank, non_blocking=True) if pitch_guidance else None | |
pitchf = (pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None) | |
sid = sid.cuda(rank, non_blocking=True) | |
spec = spec.cuda(rank, non_blocking=True) | |
spec_lengths = spec_lengths.cuda(rank, non_blocking=True) | |
wave = wave.cuda(rank, non_blocking=True) | |
wave_lengths = wave_lengths.cuda(rank, non_blocking=True) | |
else: | |
phone = phone.to(device) | |
phone_lengths = phone_lengths.to(device) | |
pitch = pitch.to(device) if pitch_guidance else None | |
pitchf = pitchf.to(device) if pitch_guidance else None | |
sid = sid.to(device) | |
spec = spec.to(device) | |
spec_lengths = spec_lengths.to(device) | |
wave = wave.to(device) | |
wave_lengths = wave_lengths.to(device) | |
use_amp = config.train.fp16_run and device.type == "cuda" | |
with autocast(enabled=use_amp): | |
( | |
y_hat, | |
ids_slice, | |
x_mask, | |
z_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid) | |
mel = spec_to_mel_torch( | |
spec, | |
config.data.filter_length, | |
config.data.n_mel_channels, | |
config.data.sample_rate, | |
config.data.mel_fmin, | |
config.data.mel_fmax, | |
) | |
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3) | |
with autocast(enabled=False): | |
y_hat_mel = mel_spectrogram_torch( | |
y_hat.float().squeeze(1), | |
config.data.filter_length, | |
config.data.n_mel_channels, | |
config.data.sample_rate, | |
config.data.hop_length, | |
config.data.win_length, | |
config.data.mel_fmin, | |
config.data.mel_fmax, | |
) | |
if use_amp: y_hat_mel = y_hat_mel.half() | |
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3) | |
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) | |
with autocast(enabled=False): | |
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g) | |
optim_d.zero_grad() | |
scaler.scale(loss_disc).backward() | |
scaler.unscale_(optim_d) | |
grad_norm_d = clip_grad_value(net_d.parameters(), None) | |
scaler.step(optim_d) | |
with autocast(enabled=use_amp): | |
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) | |
with autocast(enabled=False): | |
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel | |
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl) | |
loss_fm = feature_loss(fmap_r, fmap_g) | |
loss_gen, losses_gen = generator_loss(y_d_hat_g) | |
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl | |
if loss_gen_all < lowest_value["value"]: | |
lowest_value["value"] = loss_gen_all | |
lowest_value["step"] = global_step | |
lowest_value["epoch"] = epoch | |
if epoch > lowest_value["epoch"]: logger.warning(translations["training_warning"]) | |
optim_g.zero_grad() | |
scaler.scale(loss_gen_all).backward() | |
scaler.unscale_(optim_g) | |
grad_norm_g = clip_grad_value(net_g.parameters(), None) | |
scaler.step(optim_g) | |
scaler.update() | |
if rank == 0: | |
if global_step % config.train.log_interval == 0: | |
lr = optim_g.param_groups[0]["lr"] | |
if loss_mel > 75: loss_mel = 75 | |
if loss_kl > 9: loss_kl = 9 | |
scalar_dict = { | |
"loss/g/total": loss_gen_all, | |
"loss/d/total": loss_disc, | |
"learning_rate": lr, | |
"grad_norm_d": grad_norm_d, | |
"grad_norm_g": grad_norm_g, | |
} | |
scalar_dict.update( | |
{ | |
"loss/g/fm": loss_fm, | |
"loss/g/mel": loss_mel, | |
"loss/g/kl": loss_kl, | |
} | |
) | |
scalar_dict.update( | |
{f"loss/g/{i}": v for i, v in enumerate(losses_gen)} | |
) | |
scalar_dict.update( | |
{f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)} | |
) | |
scalar_dict.update( | |
{f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)} | |
) | |
image_dict = { | |
"slice/mel_org": plot_spectrogram_to_numpy( | |
y_mel[0].data.cpu().numpy() | |
), | |
"slice/mel_gen": plot_spectrogram_to_numpy( | |
y_hat_mel[0].data.cpu().numpy() | |
), | |
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), | |
} | |
with torch.no_grad(): | |
if hasattr(net_g, "module"): o, *_ = net_g.module.infer(*reference) | |
else: o, *_ = net_g.infer(*reference) | |
audio_dict = {f"gen/audio_{global_step:07d}": o[0, :, :]} | |
summarize( | |
writer=writer, | |
global_step=global_step, | |
images=image_dict, | |
scalars=scalar_dict, | |
audios=audio_dict, | |
audio_sample_rate=config.data.sample_rate, | |
) | |
global_step += 1 | |
pbar.update(1) | |
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004): | |
if len(smoothed_loss_history) < threshold + 1: return False | |
for i in range(-threshold, -1): | |
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True | |
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False | |
return True | |
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987): | |
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value) | |
smoothed_loss_history.append(smoothed_value) | |
return smoothed_value | |
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history): | |
data = { | |
"loss_disc_history": loss_disc_history, | |
"smoothed_loss_disc_history": smoothed_loss_disc_history, | |
"loss_gen_history": loss_gen_history, | |
"smoothed_loss_gen_history": smoothed_loss_gen_history, | |
} | |
with open(file_path, "w") as f: | |
json.dump(data, f) | |
model_add = [] | |
model_del = [] | |
done = False | |
if rank == 0: | |
if epoch % save_every_epoch == False: | |
checkpoint_suffix = f"{2333333 if save_only_latest else global_step}.pth" | |
save_checkpoint(net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix)) | |
save_checkpoint(net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix)) | |
if custom_save_every_weights: model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) | |
if overtraining_detector and epoch > 1: | |
current_loss_disc = float(loss_disc) | |
loss_disc_history.append(current_loss_disc) | |
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc) | |
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2) | |
if is_overtraining_disc: consecutive_increases_disc += 1 | |
else: consecutive_increases_disc = 0 | |
current_loss_gen = float(lowest_value["value"]) | |
loss_gen_history.append(current_loss_gen) | |
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen) | |
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01) | |
if is_overtraining_gen: consecutive_increases_gen += 1 | |
else: consecutive_increases_gen = 0 | |
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) | |
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)): | |
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
done = True | |
else: | |
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
old_model_files = glob.glob(os.path.join("assets", "weights", f"{model_name}_*e_*s_best_epoch.pth")) | |
for file in old_model_files: | |
model_del.append(file) | |
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth")) | |
if epoch >= custom_total_epoch: | |
lowest_value_rounded = float(lowest_value["value"]) | |
lowest_value_rounded = round(lowest_value_rounded, 3) | |
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3))) | |
logger.info(translations["training_info"].format(lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) | |
pid_file_path = os.path.join(experiment_dir, "config.json") | |
with open(pid_file_path, "r") as pid_file: | |
pid_data = json.load(pid_file) | |
with open(pid_file_path, "w") as pid_file: | |
pid_data.pop("process_pids", None) | |
json.dump(pid_data, pid_file, indent=4) | |
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth")) | |
done = True | |
if model_add: | |
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()) | |
for m in model_add: | |
if not os.path.exists(m): extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_dir=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author) | |
for m in model_del: | |
os.remove(m) | |
lowest_value_rounded = float(lowest_value["value"]) | |
lowest_value_rounded = round(lowest_value_rounded, 3) | |
if epoch > 1 and overtraining_detector: | |
remaining_epochs_gen = overtraining_threshold - consecutive_increases_gen | |
remaining_epochs_disc = (overtraining_threshold * 2) - consecutive_increases_disc | |
logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=remaining_epochs_gen, remaining_epochs_disc=remaining_epochs_disc, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}")) | |
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'])) | |
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record())) | |
last_loss_gen_all = loss_gen_all | |
if done: os._exit(2333333) | |
if __name__ == "__main__": | |
torch.multiprocessing.set_start_method("spawn") | |
try: | |
main() | |
except Exception as e: | |
logger.error(f"{translations['training_error']} {e}") |