File size: 14,714 Bytes
98bb602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import os
import sys
import time
import torch
import logging
import librosa
import argparse
import logging.handlers

import numpy as np
import soundfile as sf
import multiprocessing
import noisereduce as nr

from tqdm import tqdm
from scipy import signal
from scipy.io import wavfile
from distutils.util import strtobool
from concurrent.futures import ProcessPoolExecutor, as_completed

now_directory = os.getcwd()
sys.path.append(now_directory)

from main.configs.config import Config

logger = logging.getLogger(__name__)


logging.getLogger("numba.core.byteflow").setLevel(logging.ERROR)
logging.getLogger("numba.core.ssa").setLevel(logging.ERROR)
logging.getLogger("numba.core.interpreter").setLevel(logging.ERROR)

OVERLAP = 0.3
MAX_AMPLITUDE = 0.9
ALPHA = 0.75
HIGH_PASS_CUTOFF = 48
SAMPLE_RATE_16K = 16000


config = Config()
per = 3.0 if config.is_half else 3.7
translations = config.translations


def parse_arguments() -> tuple:
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", type=str, required=True)
    parser.add_argument("--dataset_path", type=str, default="./dataset")
    parser.add_argument("--sample_rate", type=int, required=True)
    parser.add_argument("--cpu_cores", type=int, default=2)
    parser.add_argument("--cut_preprocess", type=lambda x: bool(strtobool(x)), default=True)
    parser.add_argument("--process_effects", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
    parser.add_argument("--clean_strength", type=float, default=0.7)

    args = parser.parse_args()
    return args


def load_audio(file, sample_rate):
    try:
        file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
        audio, sr = sf.read(file)

        if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
        if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
    except Exception as e:
        raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")

    return audio.flatten()

class Slicer:
    def __init__(self, sr, threshold = -40.0, min_length = 5000, min_interval = 300, hop_size = 20, max_sil_kept = 5000):
        if not min_length >= min_interval >= hop_size: raise ValueError(translations["min_length>=min_interval>=hop_size"])
        if not max_sil_kept >= hop_size: raise ValueError(translations["max_sil_kept>=hop_size"])

        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.0)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        start_idx = begin * self.hop_size

        if len(waveform.shape) > 1:
            end_idx = min(waveform.shape[1], end * self.hop_size)
            return waveform[:, start_idx:end_idx]
        else:
            end_idx = min(waveform.shape[0], end * self.hop_size)
            return waveform[start_idx:end_idx]

    def slice(self, waveform):
        samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform
        if samples.shape[0] <= self.min_length: return [waveform]

        rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)

        sil_tags = []
        silence_start, clip_start = None, 0

        for i, rms in enumerate(rms_list):
            if rms < self.threshold:
                if silence_start is None: silence_start = i
                continue

            if silence_start is None: continue

            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = (i - silence_start >= self.min_interval and i - clip_start >= self.min_length)

            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue

            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start : i + 1].argmin() + silence_start
                if silence_start == 0: sil_tags.append((0, pos))
                else: sil_tags.append((pos, pos))

                clip_start = pos

            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()

                pos += i - self.max_sil_kept

                pos_l = (rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start)
                pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)

                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = (rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start)
                pos_r = (rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept)

                if silence_start == 0: sil_tags.append((0, pos_r))
                else: sil_tags.append((pos_l, pos_r))

                clip_start = pos_r
            silence_start = None

        total_frames = rms_list.shape[0]

        if (silence_start is not None and total_frames - silence_start >= self.min_interval):
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))

        if not sil_tags: return [waveform]
        else:
            chunks = []

            if sil_tags[0][0] > 0: chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))

            for i in range(len(sil_tags) - 1):
                chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))

            if sil_tags[-1][1] < total_frames: chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))

            return chunks


def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    out_strides = y.strides + tuple([y.strides[axis]])
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)

    target_axis = axis - 1 if axis < 0 else axis + 1


    xw = np.moveaxis(xw, -1, target_axis)
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
    return np.sqrt(power)


class PreProcess:
    def __init__(self, sr, exp_dir, per):
        self.slicer = Slicer(sr=sr, threshold=-42, min_length=1500, min_interval=400, hop_size=15, max_sil_kept=500)
        self.sr = sr
        self.b_high, self.a_high = signal.butter(N=5, Wn=HIGH_PASS_CUTOFF, btype="high", fs=self.sr)
        self.per = per
        self.exp_dir = exp_dir
        self.device = "cpu"
        self.gt_wavs_dir = os.path.join(exp_dir, "sliced_audios")
        self.wavs16k_dir = os.path.join(exp_dir, "sliced_audios_16k")

        os.makedirs(self.gt_wavs_dir, exist_ok=True)
        os.makedirs(self.wavs16k_dir, exist_ok=True)

    def _normalize_audio(self, audio: torch.Tensor):
        tmp_max = torch.abs(audio).max()
        if tmp_max > 2.5: return None
        
        return (audio / tmp_max * (MAX_AMPLITUDE * ALPHA)) + (1 - ALPHA) * audio

    def process_audio_segment(self, normalized_audio: np.ndarray, sid, idx0, idx1):
        if normalized_audio is None:
            logs(f"{sid}-{idx0}-{idx1}-filtered")
            return
        
        wavfile.write(os.path.join(self.gt_wavs_dir, f"{sid}_{idx0}_{idx1}.wav"), self.sr, normalized_audio.astype(np.float32))
        audio_16k = librosa.resample(normalized_audio, orig_sr=self.sr, target_sr=SAMPLE_RATE_16K)
        wavfile.write(os.path.join(self.wavs16k_dir, f"{sid}_{idx0}_{idx1}.wav"), SAMPLE_RATE_16K, audio_16k.astype(np.float32))

    def process_audio(self, path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength):
        try:
            audio = load_audio(path, self.sr)

            if process_effects: 
                audio = signal.lfilter(self.b_high, self.a_high, audio)
                audio = self._normalize_audio(audio)

            if clean_dataset: audio = nr.reduce_noise(y=audio, sr=self.sr, prop_decrease=clean_strength)

            idx1 = 0

            if cut_preprocess:
                for audio_segment in self.slicer.slice(audio):
                    i = 0

                    while 1:
                        start = int(self.sr * (self.per - OVERLAP) * i)
                        i += 1

                        if len(audio_segment[start:]) > (self.per + OVERLAP) * self.sr:
                            tmp_audio = audio_segment[start : start + int(self.per * self.sr)]
                            self.process_audio_segment(tmp_audio, sid, idx0, idx1)
                            idx1 += 1
                        else:
                            tmp_audio = audio_segment[start:]
                            self.process_audio_segment(tmp_audio, sid, idx0, idx1)
                            idx1 += 1
                            break
                        
            else: self.process_audio_segment(audio, sid, idx0, idx1)
        except Exception as e:
            raise RuntimeError(f"{translations['process_audio_error']}: {e}")

def process_file(args):
    pp, file, cut_preprocess, process_effects, clean_dataset, clean_strength = (args)
    file_path, idx0, sid = file

    pp.process_audio(file_path, idx0, sid, cut_preprocess, process_effects, clean_dataset, clean_strength)

def preprocess_training_set(input_root, sr, num_processes, exp_dir, per, cut_preprocess, process_effects, clean_dataset, clean_strength):
    start_time = time.time()

    pp = PreProcess(sr, exp_dir, per)
    logger.info(translations["start_preprocess"].format(num_processes=num_processes))

    files = []
    idx = 0

    for root, _, filenames in os.walk(input_root):
        try:
            sid = 0 if root == input_root else int(os.path.basename(root))
            for f in filenames:
                if f.lower().endswith((".wav", ".mp3", ".flac", ".ogg")):
                    files.append((os.path.join(root, f), idx, sid))
                    idx += 1
        except ValueError:
            raise ValueError(f"{translations['not_integer']} '{os.path.basename(root)}'.")

    with tqdm(total=len(files), desc=translations["preprocess"]) as pbar:
        with ProcessPoolExecutor(max_workers=num_processes) as executor:
            futures = [
                executor.submit(
                    process_file,
                    (
                        pp,
                        file,
                        cut_preprocess,
                        process_effects,
                        clean_dataset,
                        clean_strength,
                    ),
                )
                for file in files
            ]
            for future in as_completed(futures):
                try:
                    future.result() 
                except Exception as e:
                    raise RuntimeError(f"{translations['process_error']}: {e}")

                pbar.update(1)

    elapsed_time = time.time() - start_time
    logger.info(translations["preprocess_success"].format(elapsed_time=f"{elapsed_time:.2f}"))

if __name__ == "__main__":
    args = parse_arguments()

    experiment_directory = os.path.join("assets", "logs", args.model_name)
    num_processes = args.cpu_cores
    num_processes = multiprocessing.cpu_count() if num_processes is None else int(num_processes)
    dataset = args.dataset_path
    sample_rate = args.sample_rate
    cut_preprocess = args.cut_preprocess
    preprocess_effects = args.process_effects
    clean_dataset = args.clean_dataset
    clean_strength = args.clean_strength

    os.makedirs(experiment_directory, exist_ok=True)

    if len([f for f in os.listdir(os.path.join(dataset)) if os.path.isfile(os.path.join(dataset, f)) and f.lower().endswith((".wav", ".mp3", ".flac", ".ogg"))]) < 1: raise FileNotFoundError("Không tìm thấy dữ liệu")

    log_file = os.path.join(experiment_directory, "preprocess.log")

    if logger.hasHandlers(): logger.handlers.clear()
    else:
        console_handler = logging.StreamHandler()
        console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")

        console_handler.setFormatter(console_formatter)
        console_handler.setLevel(logging.INFO)

        file_handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
        file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")

        file_handler.setFormatter(file_formatter)
        file_handler.setLevel(logging.DEBUG)

        logger.addHandler(console_handler)
        logger.addHandler(file_handler)
        logger.setLevel(logging.DEBUG)

    logger.debug(f"{translations['modelname']}: {args.model_name}")
    logger.debug(f"{translations['export_process']}: {experiment_directory}")
    logger.debug(f"{translations['dataset_folder']}: {dataset}")
    logger.debug(f"{translations['pretrain_sr']}: {sample_rate}")
    logger.debug(f"{translations['cpu_core']}: {num_processes}")
    logger.debug(f"{translations['split_audio']}: {cut_preprocess}")
    logger.debug(f"{translations['preprocess_effect']}: {preprocess_effects}")
    logger.debug(f"{translations['clear_audio']}: {clean_dataset}")
    if clean_dataset: logger.debug(f"{translations['clean_strength']}: {clean_strength}")
    
    try:
        preprocess_training_set(dataset, sample_rate, num_processes, experiment_directory, per, cut_preprocess, preprocess_effects, clean_dataset, clean_strength)
    except Exception as e:
        logger.error(f"{translations['process_audio_error']} {e}")

    logger.info(f"{translations['preprocess_model_success']} {args.model_name}")