Spaces:
Build error
Build error
File size: 11,680 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import gc
import sys
import torch
import librosa
import numpy as np
import soundfile as sf
from logging import Logger
from pydub import AudioSegment
now_dir = os.getcwd()
sys.path.append(now_dir)
from . import spec_utils
from main.configs.config import Config
translations = Config().translations
class CommonSeparator:
ALL_STEMS = "All Stems"
VOCAL_STEM = "Vocals"
INST_STEM = "Instrumental"
OTHER_STEM = "Other"
BASS_STEM = "Bass"
DRUM_STEM = "Drums"
GUITAR_STEM = "Guitar"
PIANO_STEM = "Piano"
SYNTH_STEM = "Synthesizer"
STRINGS_STEM = "Strings"
WOODWINDS_STEM = "Woodwinds"
BRASS_STEM = "Brass"
WIND_INST_STEM = "Wind Inst"
NO_OTHER_STEM = "No Other"
NO_BASS_STEM = "No Bass"
NO_DRUM_STEM = "No Drums"
NO_GUITAR_STEM = "No Guitar"
NO_PIANO_STEM = "No Piano"
NO_SYNTH_STEM = "No Synthesizer"
NO_STRINGS_STEM = "No Strings"
NO_WOODWINDS_STEM = "No Woodwinds"
NO_WIND_INST_STEM = "No Wind Inst"
NO_BRASS_STEM = "No Brass"
PRIMARY_STEM = "Primary Stem"
SECONDARY_STEM = "Secondary Stem"
LEAD_VOCAL_STEM = "lead_only"
BV_VOCAL_STEM = "backing_only"
LEAD_VOCAL_STEM_I = "with_lead_vocals"
BV_VOCAL_STEM_I = "with_backing_vocals"
LEAD_VOCAL_STEM_LABEL = "Lead Vocals"
BV_VOCAL_STEM_LABEL = "Backing Vocals"
NO_STEM = "No "
STEM_PAIR_MAPPER = {VOCAL_STEM: INST_STEM, INST_STEM: VOCAL_STEM, LEAD_VOCAL_STEM: BV_VOCAL_STEM, BV_VOCAL_STEM: LEAD_VOCAL_STEM, PRIMARY_STEM: SECONDARY_STEM}
NON_ACCOM_STEMS = (VOCAL_STEM, OTHER_STEM, BASS_STEM, DRUM_STEM, GUITAR_STEM, PIANO_STEM, SYNTH_STEM, STRINGS_STEM, WOODWINDS_STEM, BRASS_STEM, WIND_INST_STEM)
def __init__(self, config):
self.logger: Logger = config.get("logger")
self.log_level: int = config.get("log_level")
self.torch_device = config.get("torch_device")
self.torch_device_cpu = config.get("torch_device_cpu")
self.torch_device_mps = config.get("torch_device_mps")
self.onnx_execution_provider = config.get("onnx_execution_provider")
self.model_name = config.get("model_name")
self.model_path = config.get("model_path")
self.model_data = config.get("model_data")
self.output_dir = config.get("output_dir")
self.output_format = config.get("output_format")
self.output_bitrate = config.get("output_bitrate")
self.normalization_threshold = config.get("normalization_threshold")
self.enable_denoise = config.get("enable_denoise")
self.output_single_stem = config.get("output_single_stem")
self.invert_using_spec = config.get("invert_using_spec")
self.sample_rate = config.get("sample_rate")
self.primary_stem_name = None
self.secondary_stem_name = None
if "training" in self.model_data and "instruments" in self.model_data["training"]:
instruments = self.model_data["training"]["instruments"]
if instruments:
self.primary_stem_name = instruments[0]
self.secondary_stem_name = instruments[1] if len(instruments) > 1 else self.secondary_stem(self.primary_stem_name)
if self.primary_stem_name is None:
self.primary_stem_name = self.model_data.get("primary_stem", "Vocals")
self.secondary_stem_name = self.secondary_stem(self.primary_stem_name)
self.is_karaoke = self.model_data.get("is_karaoke", False)
self.is_bv_model = self.model_data.get("is_bv_model", False)
self.bv_model_rebalance = self.model_data.get("is_bv_model_rebalanced", 0)
self.logger.debug(translations["info"].format(model_name=self.model_name, model_path=self.model_path))
self.logger.debug(translations["info_2"].format(output_dir=self.output_dir, output_format=self.output_format))
self.logger.debug(translations["info_3"].format(normalization_threshold=self.normalization_threshold))
self.logger.debug(translations["info_4"].format(enable_denoise=self.enable_denoise, output_single_stem=self.output_single_stem))
self.logger.debug(translations["info_5"].format(invert_using_spec=self.invert_using_spec, sample_rate=self.sample_rate))
self.logger.debug(translations["info_6"].format(primary_stem_name=self.primary_stem_name, secondary_stem_name=self.secondary_stem_name))
self.logger.debug(translations["info_7"].format(is_karaoke=self.is_karaoke, is_bv_model=self.is_bv_model, bv_model_rebalance=self.bv_model_rebalance))
self.audio_file_path = None
self.audio_file_base = None
self.primary_source = None
self.secondary_source = None
self.primary_stem_output_path = None
self.secondary_stem_output_path = None
self.cached_sources_map = {}
def secondary_stem(self, primary_stem: str):
primary_stem = primary_stem if primary_stem else self.NO_STEM
return self.STEM_PAIR_MAPPER[primary_stem] if primary_stem in self.STEM_PAIR_MAPPER else primary_stem.replace(self.NO_STEM, "") if self.NO_STEM in primary_stem else f"{self.NO_STEM}{primary_stem}"
def separate(self, audio_file_path):
pass
def final_process(self, stem_path, source, stem_name):
self.logger.debug(translations["success_process"].format(stem_name=stem_name))
self.write_audio(stem_path, source)
return {stem_name: source}
def cached_sources_clear(self):
self.cached_sources_map = {}
def cached_source_callback(self, model_architecture, model_name=None):
model, sources = None, None
mapper = self.cached_sources_map[model_architecture]
for key, value in mapper.items():
if model_name in key:
model = key
sources = value
return model, sources
def cached_model_source_holder(self, model_architecture, sources, model_name=None):
self.cached_sources_map[model_architecture] = {**self.cached_sources_map.get(model_architecture, {}), **{model_name: sources}}
def prepare_mix(self, mix):
audio_path = mix
if not isinstance(mix, np.ndarray):
self.logger.debug(f"{translations['load_audio']}: {mix}")
mix, sr = librosa.load(mix, mono=False, sr=self.sample_rate)
self.logger.debug(translations["load_audio_success"].format(sr=sr, shape=mix.shape))
else:
self.logger.debug(translations["convert_mix"])
mix = mix.T
self.logger.debug(translations["convert_shape"].format(shape=mix.shape))
if isinstance(audio_path, str):
if not np.any(mix):
error_msg = translations["audio_not_valid"].format(audio_path=audio_path)
self.logger.error(error_msg)
raise ValueError(error_msg)
else: self.logger.debug(translations["audio_valid"])
if mix.ndim == 1:
self.logger.debug(translations["mix_single"])
mix = np.asfortranarray([mix, mix])
self.logger.debug(translations["convert_mix_audio"])
self.logger.debug(translations["mix_success_2"])
return mix
def write_audio(self, stem_path: str, stem_source):
duration_seconds = librosa.get_duration(filename=self.audio_file_path)
duration_hours = duration_seconds / 3600
self.logger.info(translations["duration"].format(duration_hours=f"{duration_hours:.2f}", duration_seconds=f"{duration_seconds:.2f}"))
if duration_hours >= 1:
self.logger.warning(translations["write"].format(name="soundfile"))
self.write_audio_soundfile(stem_path, stem_source)
else:
self.logger.info(translations["write"].format(name="pydub"))
self.write_audio_pydub(stem_path, stem_source)
def write_audio_pydub(self, stem_path: str, stem_source):
self.logger.debug(f"{translations['write_audio'].format(name='write_audio_pydub')} {stem_path}")
stem_source = spec_utils.normalize(wave=stem_source, max_peak=self.normalization_threshold)
if np.max(np.abs(stem_source)) < 1e-6:
self.logger.warning(translations["original_not_valid"])
return
if self.output_dir:
os.makedirs(self.output_dir, exist_ok=True)
stem_path = os.path.join(self.output_dir, stem_path)
self.logger.debug(f"{translations['shape_audio']}: {stem_source.shape}")
self.logger.debug(f"{translations['convert_data']}: {stem_source.dtype}")
if stem_source.dtype != np.int16:
stem_source = (stem_source * 32767).astype(np.int16)
self.logger.debug(translations["original_source_to_int16"])
stem_source_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
stem_source_interleaved[0::2] = stem_source[:, 0]
stem_source_interleaved[1::2] = stem_source[:, 1]
self.logger.debug(f"{translations['shape_audio_2']}: {stem_source_interleaved.shape}")
try:
audio_segment = AudioSegment(stem_source_interleaved.tobytes(), frame_rate=self.sample_rate, sample_width=stem_source.dtype.itemsize, channels=2)
self.logger.debug(translations["create_audiosegment"])
except (IOError, ValueError) as e:
self.logger.error(f"{translations['create_audiosegment_error']}: {e}")
return
file_format = stem_path.lower().split(".")[-1]
if file_format == "m4a": file_format = "mp4"
elif file_format == "mka": file_format = "matroska"
bitrate = "320k" if file_format == "mp3" and self.output_bitrate is None else self.output_bitrate
try:
audio_segment.export(stem_path, format=file_format, bitrate=bitrate)
self.logger.debug(f"{translations['export_success']} {stem_path}")
except (IOError, ValueError) as e:
self.logger.error(f"{translations['export_error']}: {e}")
def write_audio_soundfile(self, stem_path: str, stem_source):
self.logger.debug(f"{translations['write_audio'].format(name='write_audio_soundfile')}: {stem_path}")
if stem_source.shape[1] == 2:
if stem_source.flags["F_CONTIGUOUS"]: stem_source = np.ascontiguousarray(stem_source)
else:
stereo_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
stereo_interleaved[0::2] = stem_source[:, 0]
stereo_interleaved[1::2] = stem_source[:, 1]
stem_source = stereo_interleaved
self.logger.debug(f"{translations['shape_audio_2']}: {stem_source.shape}")
try:
sf.write(stem_path, stem_source, self.sample_rate)
self.logger.debug(f"{translations['export_success']} {stem_path}")
except Exception as e:
self.logger.error(f"{translations['export_error']}: {e}")
def clear_gpu_cache(self):
self.logger.debug(translations["clean"])
gc.collect()
if self.torch_device == torch.device("mps"):
self.logger.debug(translations["clean_cache"].format(name="MPS"))
torch.mps.empty_cache()
if self.torch_device == torch.device("cuda"):
self.logger.debug(translations["clean_cache"].format(name="CUDA"))
torch.cuda.empty_cache()
def clear_file_specific_paths(self):
self.logger.info(translations["del_path"])
self.audio_file_path = None
self.audio_file_base = None
self.primary_source = None
self.secondary_source = None
self.primary_stem_output_path = None
self.secondary_stem_output_path = None |