File size: 11,680 Bytes
98bb602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import gc
import sys
import torch
import librosa

import numpy as np
import soundfile as sf

from logging import Logger
from pydub import AudioSegment

now_dir = os.getcwd()
sys.path.append(now_dir)

from . import spec_utils
from main.configs.config import Config

translations = Config().translations

class CommonSeparator:
    ALL_STEMS = "All Stems"
    VOCAL_STEM = "Vocals"
    INST_STEM = "Instrumental"
    OTHER_STEM = "Other"
    BASS_STEM = "Bass"
    DRUM_STEM = "Drums"
    GUITAR_STEM = "Guitar"
    PIANO_STEM = "Piano"
    SYNTH_STEM = "Synthesizer"
    STRINGS_STEM = "Strings"
    WOODWINDS_STEM = "Woodwinds"
    BRASS_STEM = "Brass"
    WIND_INST_STEM = "Wind Inst"
    NO_OTHER_STEM = "No Other"
    NO_BASS_STEM = "No Bass"
    NO_DRUM_STEM = "No Drums"
    NO_GUITAR_STEM = "No Guitar"
    NO_PIANO_STEM = "No Piano"
    NO_SYNTH_STEM = "No Synthesizer"
    NO_STRINGS_STEM = "No Strings"
    NO_WOODWINDS_STEM = "No Woodwinds"
    NO_WIND_INST_STEM = "No Wind Inst"
    NO_BRASS_STEM = "No Brass"
    PRIMARY_STEM = "Primary Stem"
    SECONDARY_STEM = "Secondary Stem"
    LEAD_VOCAL_STEM = "lead_only"
    BV_VOCAL_STEM = "backing_only"
    LEAD_VOCAL_STEM_I = "with_lead_vocals"
    BV_VOCAL_STEM_I = "with_backing_vocals"
    LEAD_VOCAL_STEM_LABEL = "Lead Vocals"
    BV_VOCAL_STEM_LABEL = "Backing Vocals"
    NO_STEM = "No "

    STEM_PAIR_MAPPER = {VOCAL_STEM: INST_STEM, INST_STEM: VOCAL_STEM, LEAD_VOCAL_STEM: BV_VOCAL_STEM, BV_VOCAL_STEM: LEAD_VOCAL_STEM, PRIMARY_STEM: SECONDARY_STEM}

    NON_ACCOM_STEMS = (VOCAL_STEM, OTHER_STEM, BASS_STEM, DRUM_STEM, GUITAR_STEM, PIANO_STEM, SYNTH_STEM, STRINGS_STEM, WOODWINDS_STEM, BRASS_STEM, WIND_INST_STEM)


    def __init__(self, config):
        self.logger: Logger = config.get("logger")
        self.log_level: int = config.get("log_level")
        self.torch_device = config.get("torch_device")
        self.torch_device_cpu = config.get("torch_device_cpu")
        self.torch_device_mps = config.get("torch_device_mps")
        self.onnx_execution_provider = config.get("onnx_execution_provider")
        self.model_name = config.get("model_name")
        self.model_path = config.get("model_path")
        self.model_data = config.get("model_data")
        self.output_dir = config.get("output_dir")
        self.output_format = config.get("output_format")
        self.output_bitrate = config.get("output_bitrate")
        self.normalization_threshold = config.get("normalization_threshold")
        self.enable_denoise = config.get("enable_denoise")
        self.output_single_stem = config.get("output_single_stem")
        self.invert_using_spec = config.get("invert_using_spec")
        self.sample_rate = config.get("sample_rate")

        self.primary_stem_name = None
        self.secondary_stem_name = None

        if "training" in self.model_data and "instruments" in self.model_data["training"]:
            instruments = self.model_data["training"]["instruments"]

            if instruments:
                self.primary_stem_name = instruments[0]
                self.secondary_stem_name = instruments[1] if len(instruments) > 1 else self.secondary_stem(self.primary_stem_name)

        if self.primary_stem_name is None:
            self.primary_stem_name = self.model_data.get("primary_stem", "Vocals")
            self.secondary_stem_name = self.secondary_stem(self.primary_stem_name)

        self.is_karaoke = self.model_data.get("is_karaoke", False)
        self.is_bv_model = self.model_data.get("is_bv_model", False)
        self.bv_model_rebalance = self.model_data.get("is_bv_model_rebalanced", 0)

        self.logger.debug(translations["info"].format(model_name=self.model_name, model_path=self.model_path))
        self.logger.debug(translations["info_2"].format(output_dir=self.output_dir, output_format=self.output_format))
        self.logger.debug(translations["info_3"].format(normalization_threshold=self.normalization_threshold))
        self.logger.debug(translations["info_4"].format(enable_denoise=self.enable_denoise, output_single_stem=self.output_single_stem))
        self.logger.debug(translations["info_5"].format(invert_using_spec=self.invert_using_spec, sample_rate=self.sample_rate))
        self.logger.debug(translations["info_6"].format(primary_stem_name=self.primary_stem_name, secondary_stem_name=self.secondary_stem_name))
        self.logger.debug(translations["info_7"].format(is_karaoke=self.is_karaoke, is_bv_model=self.is_bv_model, bv_model_rebalance=self.bv_model_rebalance))

        self.audio_file_path = None
        self.audio_file_base = None
        self.primary_source = None
        self.secondary_source = None
        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None
        self.cached_sources_map = {}

    def secondary_stem(self, primary_stem: str):
        primary_stem = primary_stem if primary_stem else self.NO_STEM

        return self.STEM_PAIR_MAPPER[primary_stem] if primary_stem in self.STEM_PAIR_MAPPER else primary_stem.replace(self.NO_STEM, "") if self.NO_STEM in primary_stem else f"{self.NO_STEM}{primary_stem}"

    def separate(self, audio_file_path):
        pass

    def final_process(self, stem_path, source, stem_name):
        self.logger.debug(translations["success_process"].format(stem_name=stem_name))
        self.write_audio(stem_path, source)

        return {stem_name: source}

    def cached_sources_clear(self):
        self.cached_sources_map = {}

    def cached_source_callback(self, model_architecture, model_name=None):
        model, sources = None, None
        mapper = self.cached_sources_map[model_architecture]

        for key, value in mapper.items():
            if model_name in key:
                model = key
                sources = value

        return model, sources

    def cached_model_source_holder(self, model_architecture, sources, model_name=None):
        self.cached_sources_map[model_architecture] = {**self.cached_sources_map.get(model_architecture, {}), **{model_name: sources}}

    def prepare_mix(self, mix):
        audio_path = mix

        if not isinstance(mix, np.ndarray):
            self.logger.debug(f"{translations['load_audio']}: {mix}")
            mix, sr = librosa.load(mix, mono=False, sr=self.sample_rate)
            self.logger.debug(translations["load_audio_success"].format(sr=sr, shape=mix.shape))
        else:
            self.logger.debug(translations["convert_mix"])
            mix = mix.T
            self.logger.debug(translations["convert_shape"].format(shape=mix.shape))

        if isinstance(audio_path, str):
            if not np.any(mix):
                error_msg = translations["audio_not_valid"].format(audio_path=audio_path)
                self.logger.error(error_msg)
                raise ValueError(error_msg)
            else: self.logger.debug(translations["audio_valid"])

        if mix.ndim == 1:
            self.logger.debug(translations["mix_single"])
            mix = np.asfortranarray([mix, mix])
            self.logger.debug(translations["convert_mix_audio"])

        self.logger.debug(translations["mix_success_2"])
        return mix

    def write_audio(self, stem_path: str, stem_source):
        duration_seconds = librosa.get_duration(filename=self.audio_file_path)
        duration_hours = duration_seconds / 3600
        self.logger.info(translations["duration"].format(duration_hours=f"{duration_hours:.2f}", duration_seconds=f"{duration_seconds:.2f}"))

        if duration_hours >= 1:
            self.logger.warning(translations["write"].format(name="soundfile"))
            self.write_audio_soundfile(stem_path, stem_source)
        else:
            self.logger.info(translations["write"].format(name="pydub"))
            self.write_audio_pydub(stem_path, stem_source)

    def write_audio_pydub(self, stem_path: str, stem_source):
        self.logger.debug(f"{translations['write_audio'].format(name='write_audio_pydub')} {stem_path}")

        stem_source = spec_utils.normalize(wave=stem_source, max_peak=self.normalization_threshold)

        if np.max(np.abs(stem_source)) < 1e-6:
            self.logger.warning(translations["original_not_valid"])
            return

        if self.output_dir:
            os.makedirs(self.output_dir, exist_ok=True)
            stem_path = os.path.join(self.output_dir, stem_path)

        self.logger.debug(f"{translations['shape_audio']}: {stem_source.shape}")
        self.logger.debug(f"{translations['convert_data']}: {stem_source.dtype}")

        if stem_source.dtype != np.int16:
            stem_source = (stem_source * 32767).astype(np.int16)
            self.logger.debug(translations["original_source_to_int16"])

        stem_source_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
        stem_source_interleaved[0::2] = stem_source[:, 0] 
        stem_source_interleaved[1::2] = stem_source[:, 1]

        self.logger.debug(f"{translations['shape_audio_2']}: {stem_source_interleaved.shape}")

        try:
            audio_segment = AudioSegment(stem_source_interleaved.tobytes(), frame_rate=self.sample_rate, sample_width=stem_source.dtype.itemsize, channels=2)
            self.logger.debug(translations["create_audiosegment"])
        except (IOError, ValueError) as e:
            self.logger.error(f"{translations['create_audiosegment_error']}: {e}")
            return

        file_format = stem_path.lower().split(".")[-1]

        if file_format == "m4a": file_format = "mp4"
        elif file_format == "mka": file_format = "matroska"

        bitrate = "320k" if file_format == "mp3" and self.output_bitrate is None else self.output_bitrate

        try:
            audio_segment.export(stem_path, format=file_format, bitrate=bitrate)
            self.logger.debug(f"{translations['export_success']} {stem_path}")
        except (IOError, ValueError) as e:
            self.logger.error(f"{translations['export_error']}: {e}")

    def write_audio_soundfile(self, stem_path: str, stem_source):
        self.logger.debug(f"{translations['write_audio'].format(name='write_audio_soundfile')}: {stem_path}")

        if stem_source.shape[1] == 2:
            if stem_source.flags["F_CONTIGUOUS"]: stem_source = np.ascontiguousarray(stem_source)
            else:
                stereo_interleaved = np.empty((2 * stem_source.shape[0],), dtype=np.int16)
                stereo_interleaved[0::2] = stem_source[:, 0]

                stereo_interleaved[1::2] = stem_source[:, 1]
                stem_source = stereo_interleaved

        self.logger.debug(f"{translations['shape_audio_2']}: {stem_source.shape}")

        try:
            sf.write(stem_path, stem_source, self.sample_rate)
            self.logger.debug(f"{translations['export_success']} {stem_path}")
        except Exception as e:
            self.logger.error(f"{translations['export_error']}: {e}")

    def clear_gpu_cache(self):
        self.logger.debug(translations["clean"])
        gc.collect()

        if self.torch_device == torch.device("mps"):
            self.logger.debug(translations["clean_cache"].format(name="MPS"))
            torch.mps.empty_cache()

        if self.torch_device == torch.device("cuda"):
            self.logger.debug(translations["clean_cache"].format(name="CUDA"))
            torch.cuda.empty_cache()

    def clear_file_specific_paths(self):
        self.logger.info(translations["del_path"])
        self.audio_file_path = None
        self.audio_file_base = None
        
        self.primary_source = None
        self.secondary_source = None

        self.primary_stem_output_path = None
        self.secondary_stem_output_path = None