Spaces:
Build error
Build error
File size: 14,666 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import re
import sys
import time
import yt_dlp
import shutil
import librosa
import logging
import argparse
import warnings
import logging.handlers
import soundfile as sf
import noisereduce as nr
from distutils.util import strtobool
from pydub import AudioSegment, silence
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
from main.library.algorithm.separator import Separator
translations = Config().translations
log_file = os.path.join("assets", "logs", "create_dataset.log")
logger = logging.getLogger(__name__)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments() -> tuple:
parser = argparse.ArgumentParser()
parser.add_argument("--input_audio", type=str, required=True)
parser.add_argument("--output_dataset", type=str, default="./dataset")
parser.add_argument("--resample", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--resample_sr", type=int, default=44100)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--separator_music", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--separator_reverb", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--kim_vocal_version", type=int, default=2)
parser.add_argument("--overlap", type=float, default=0.25)
parser.add_argument("--segments_size", type=int, default=256)
parser.add_argument("--mdx_hop_length", type=int, default=1024)
parser.add_argument("--mdx_batch_size", type=int, default=1)
parser.add_argument("--denoise_mdx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip_start_audios", type=str, default="0")
parser.add_argument("--skip_end_audios", type=str, default="0")
args = parser.parse_args()
return args
dataset_temp = os.path.join("dataset_temp")
def main():
args = parse_arguments()
input_audio = args.input_audio
output_dataset = args.output_dataset
resample = args.resample
resample_sr = args.resample_sr
clean_dataset = args.clean_dataset
clean_strength = args.clean_strength
separator_music = args.separator_music
separator_reverb = args.separator_reverb
kim_vocal_version = args.kim_vocal_version
overlap = args.overlap
segments_size = args.segments_size
hop_length = args.mdx_hop_length
batch_size = args.mdx_batch_size
denoise_mdx = args.denoise_mdx
skip = args.skip
skip_start_audios = args.skip_start_audios
skip_end_audios = args.skip_end_audios
logger.debug(f"{translations['audio_path']}: {input_audio}")
logger.debug(f"{translations['output_path']}: {output_dataset}")
logger.debug(f"{translations['resample']}: {resample}")
if resample: logger.debug(f"{translations['sample_rate']}: {resample_sr}")
logger.debug(f"{translations['clear_dataset']}: {clean_dataset}")
if clean_dataset: logger.debug(f"{translations['clean_strength']}: {clean_strength}")
logger.debug(f"{translations['separator_music']}: {separator_music}")
logger.debug(f"{translations['dereveb_audio']}: {separator_reverb}")
if separator_music: logger.debug(f"{translations['training_version']}: {kim_vocal_version}")
logger.debug(f"{translations['segments_size']}: {segments_size}")
logger.debug(f"{translations['overlap']}: {overlap}")
logger.debug(f"Hop length: {hop_length}")
logger.debug(f"{translations['batch_size']}: {batch_size}")
logger.debug(f"{translations['denoise_mdx']}: {denoise_mdx}")
logger.debug(f"{translations['skip']}: {skip}")
if skip: logger.debug(f"{translations['skip_start']}: {skip_start_audios}")
if skip: logger.debug(f"{translations['skip_end']}: {skip_end_audios}")
if kim_vocal_version != 1 and kim_vocal_version != 2: raise ValueError(translations["version_not_valid"])
if separator_reverb and not separator_music: raise ValueError(translations["create_dataset_value_not_valid"])
start_time = time.time()
try:
paths = []
if not os.path.exists(dataset_temp): os.makedirs(dataset_temp, exist_ok=True)
urls = input_audio.replace(", ", ",").split(",")
for url in urls:
path = downloader(url, urls.index(url))
paths.append(path)
if skip:
skip_start_audios = skip_start_audios.replace(", ", ",").split(",")
skip_end_audios = skip_end_audios.replace(", ", ",").split(",")
if len(skip_start_audios) < len(paths) or len(skip_end_audios) < len(paths):
logger.warning(translations["skip<audio"])
sys.exit(1)
elif len(skip_start_audios) > len(paths) or len(skip_end_audios) > len(paths):
logger.warning(translations["skip>audio"])
sys.exit(1)
else:
for audio, skip_start_audio, skip_end_audio in zip(paths, skip_start_audios, skip_end_audios):
skip_start(audio, skip_start_audio)
skip_end(audio, skip_end_audio)
if separator_music:
separator_paths = []
for audio in paths:
vocals = separator_music_main(audio, dataset_temp, segments_size, overlap, denoise_mdx, kim_vocal_version, hop_length, batch_size)
if separator_reverb: vocals = separator_reverb_audio(vocals, dataset_temp, segments_size, overlap, denoise_mdx, hop_length, batch_size)
separator_paths.append(vocals)
paths = separator_paths
processed_paths = []
for audio in paths:
output = process_audio(audio)
processed_paths.append(output)
paths = processed_paths
for audio_path in paths:
data, sample_rate = sf.read(audio_path)
if resample_sr != sample_rate and resample_sr > 0 and resample:
data = librosa.resample(data, orig_sr=sample_rate, target_sr=resample_sr)
sample_rate = resample_sr
if clean_dataset: data = nr.reduce_noise(y=data, prop_decrease=clean_strength)
sf.write(audio_path, data, sample_rate)
except Exception as e:
raise RuntimeError(f"{translations['create_dataset_error']}: {e}")
finally:
for audio in paths:
shutil.move(audio, output_dataset)
if os.path.exists(dataset_temp): shutil.rmtree(dataset_temp, ignore_errors=True)
elapsed_time = time.time() - start_time
logger.info(translations["create_dataset_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def downloader(url, name):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': os.path.join(dataset_temp, f"{name}"),
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'noplaylist': True,
'verbose': False,
}
logger.info(f"{translations['starting_download']}: {url}...")
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.extract_info(url)
logger.info(f"{translations['download_success']}: {url}")
return os.path.join(dataset_temp, f"{name}" + ".wav")
def skip_start(input_file, seconds):
data, sr = sf.read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds >= total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_start']}: {input_file}...")
sf.write(input_file, data[int(seconds * sr):], sr)
logger.info(translations["skip_start_audio"].format(input_file=input_file))
def skip_end(input_file, seconds):
data, sr = sf.read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds > total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_end']}: {input_file}...")
sf.write(input_file, data[:-int(seconds * sr)], sr)
logger.info(translations["skip_end_audio"].format(input_file=input_file))
def process_audio(file_path):
try:
song = AudioSegment.from_file(file_path)
nonsilent_parts = silence.detect_nonsilent(song, min_silence_len=750, silence_thresh=-70)
cut_files = []
for i, (start_i, end_i) in enumerate(nonsilent_parts):
chunk = song[start_i:end_i]
if len(chunk) >= 30:
chunk_file_path = os.path.join(os.path.dirname(file_path), f"chunk{i}.wav")
if os.path.exists(chunk_file_path): os.remove(chunk_file_path)
chunk.export(chunk_file_path, format="wav")
cut_files.append(chunk_file_path)
else: logger.warning(translations["skip_file"].format(i=i, chunk=len(chunk)))
logger.info(f"{translations['split_total']}: {len(cut_files)}")
def extract_number(filename):
match = re.search(r'_(\d+)', filename)
return int(match.group(1)) if match else 0
cut_files = sorted(cut_files, key=extract_number)
combined = AudioSegment.empty()
for file in cut_files:
combined += AudioSegment.from_file(file)
output_path = os.path.splitext(file_path)[0] + "_processed" + ".wav"
logger.info(translations["merge_audio"])
combined.export(output_path, format="wav")
return output_path
except Exception as e:
raise RuntimeError(f"{translations['process_audio_error']}: {e}")
def separator_music_main(input, output, segments_size, overlap, denoise, version, hop_length, batch_size):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
model = f"Kim_Vocal_{version}.onnx"
logger.info(translations["separator_process"].format(input=input))
output_separator = separator_main(audio_file=input, model_filename=model, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=batch_size, mdx_hop_length=hop_length, mdx_enable_denoise=denoise)
for f in output_separator:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Instrumental)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(Vocals)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
logger.info(f": {rename_file}")
return rename_file
def separator_reverb_audio(input, output, segments_size, overlap, denoise, hop_length, batch_size):
reverb_models = "Reverb_HQ_By_FoxJoy.onnx"
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
logger.info(f"{translations['dereverb']}: {input}...")
output_dereverb = separator_main(audio_file=input, model_filename=reverb_models, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=hop_length, mdx_hop_length=batch_size, mdx_enable_denoise=denoise)
for f in output_dereverb:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Reverb)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(No Reverb)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
logger.info(f"{translations['dereverb_success']}: {rename_file}")
return rename_file
def separator_main(audio_file=None, model_filename="Kim_Vocal_1.onnx", output_format="wav", output_dir=".", mdx_segment_size=256, mdx_overlap=0.25, mdx_batch_size=1, mdx_hop_length=1024, mdx_enable_denoise=True):
separator = Separator(
log_formatter=file_formatter,
log_level=logging.INFO,
output_dir=output_dir,
output_format=output_format,
output_bitrate=None,
normalization_threshold=0.9,
output_single_stem=None,
invert_using_spec=False,
sample_rate=44100,
mdx_params={
"hop_length": mdx_hop_length,
"segment_size": mdx_segment_size,
"overlap": mdx_overlap,
"batch_size": mdx_batch_size,
"enable_denoise": mdx_enable_denoise,
},
)
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
if __name__ == "__main__": main() |