Spaces:
Build error
Build error
File size: 47,838 Bytes
98bb602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 |
import gc
import re
import os
import sys
import time
import torch
import faiss
import shutil
import codecs
import pyworld
import librosa
import logging
import argparse
import warnings
import traceback
import torchcrepe
import subprocess
import parselmouth
import logging.handlers
import numpy as np
import soundfile as sf
import noisereduce as nr
import torch.nn.functional as F
import torch.multiprocessing as mp
from tqdm import tqdm
from scipy import signal
from torch import Tensor
from scipy.io import wavfile
from audio_upscaler import upscale
from distutils.util import strtobool
from fairseq import checkpoint_utils
from pydub import AudioSegment, silence
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
from main.library.predictors.FCPE import FCPE
from main.library.predictors.RMVPE import RMVPE
from main.library.algorithm.synthesizers import Synthesizer
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("wget").setLevel(logging.ERROR)
logging.getLogger("torch").setLevel(logging.ERROR)
logging.getLogger("faiss").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("fairseq").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("faiss.loader").setLevel(logging.ERROR)
FILTER_ORDER = 5
CUTOFF_FREQUENCY = 48
SAMPLE_RATE = 16000
bh, ah = signal.butter(N=FILTER_ORDER, Wn=CUTOFF_FREQUENCY, btype="high", fs=SAMPLE_RATE)
input_audio_path2wav = {}
log_file = os.path.join("assets", "logs", "convert.log")
logger = logging.getLogger(__name__)
logger.propagate = False
translations = Config().translations
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments() -> tuple:
parser = argparse.ArgumentParser()
parser.add_argument("--pitch", type=int, default=0)
parser.add_argument("--filter_radius", type=int, default=3)
parser.add_argument("--index_rate", type=float, default=0.5)
parser.add_argument("--volume_envelope", type=float, default=1)
parser.add_argument("--protect", type=float, default=0.33)
parser.add_argument("--hop_length", type=int, default=64)
parser.add_argument( "--f0_method", type=str, default="rmvpe")
parser.add_argument("--input_path", type=str, required=True)
parser.add_argument("--output_path", type=str, default="./audios/output.wav")
parser.add_argument("--pth_path", type=str, required=True)
parser.add_argument("--index_path", type=str, required=True)
parser.add_argument("--f0_autotune", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--f0_autotune_strength", type=float, default=1)
parser.add_argument("--clean_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--export_format", type=str, default="wav")
parser.add_argument("--embedder_model", type=str, default="contentvec_base")
parser.add_argument("--upscale_audio", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--resample_sr", type=int, default=0)
parser.add_argument("--batch_process", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--batch_size", type=int, default=2)
parser.add_argument("--split_audio", type=lambda x: bool(strtobool(x)), default=False)
args = parser.parse_args()
return args
def main():
args = parse_arguments()
pitch = args.pitch
filter_radius = args.filter_radius
index_rate = args.index_rate
volume_envelope = args.volume_envelope
protect = args.protect
hop_length = args.hop_length
f0_method = args.f0_method
input_path = args.input_path
output_path = args.output_path
pth_path = args.pth_path
index_path = args.index_path
f0_autotune = args.f0_autotune
f0_autotune_strength = args.f0_autotune_strength
clean_audio = args.clean_audio
clean_strength = args.clean_strength
export_format = args.export_format
embedder_model = args.embedder_model
upscale_audio = args.upscale_audio
resample_sr = args.resample_sr
batch_process = args.batch_process
batch_size = args.batch_size
split_audio = args.split_audio
logger.debug(f"{translations['pitch']}: {pitch}")
logger.debug(f"{translations['filter_radius']}: {filter_radius}")
logger.debug(f"{translations['index_strength']} {index_rate}")
logger.debug(f"{translations['volume_envelope']}: {volume_envelope}")
logger.debug(f"{translations['protect']}: {protect}")
if f0_method == "crepe" or f0_method == "crepe-tiny": logger.debug(f"Hop length: {hop_length}")
logger.debug(f"{translations['f0_method']}: {f0_method}")
logger.debug(f"f0_method: {input_path}")
logger.debug(f"{translations['audio_path']}: {input_path}")
logger.debug(f"{translations['output_path']}: {output_path.replace('.wav', f'.{export_format}')}")
logger.debug(f"{translations['model_path']}: {pth_path}")
logger.debug(f"{translations['indexpath']}: {index_path}")
logger.debug(f"{translations['autotune']}: {f0_autotune}")
logger.debug(f"{translations['clear_audio']}: {clean_audio}")
if clean_audio: logger.debug(f"{translations['clean_strength']}: {clean_strength}")
logger.debug(f"{translations['export_format']}: {export_format}")
logger.debug(f"{translations['hubert_model']}: {embedder_model}")
logger.debug(f"{translations['upscale_audio']}: {upscale_audio}")
if resample_sr != 0: logger.debug(f"{translations['sample_rate']}: {resample_sr}")
if split_audio: logger.debug(f"{translations['batch_process']}: {batch_process}")
if batch_process and split_audio: logger.debug(f"{translations['batch_size']}: {batch_size}")
logger.debug(f"{translations['split_audio']}: {split_audio}")
if f0_autotune: logger.debug(f"{translations['autotune_rate_info']}: {f0_autotune_strength}")
check_rmvpe_fcpe(f0_method)
check_hubert(embedder_model)
run_convert_script(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, input_path=input_path, output_path=output_path, pth_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, embedder_model=embedder_model, upscale_audio=upscale_audio, resample_sr=resample_sr, batch_process=batch_process, batch_size=batch_size, split_audio=split_audio)
def check_rmvpe_fcpe(method):
def download_rmvpe():
if not os.path.exists(os.path.join("assets", "model", "predictors", "rmvpe.pt")): subprocess.run(["wget", "-q", "--show-progress", "--no-check-certificate", codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Pbyno_EIP_Cebwrpg_2/erfbyir/znva/", "rot13") + "rmvpe.pt", "-P", os.path.join("assets", "model", "predictors")], check=True)
def download_fcpe():
if not os.path.exists(os.path.join("assets", "model", "predictors", "fcpe.pt")): subprocess.run(["wget", "-q", "--show-progress", "--no-check-certificate", codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Pbyno_EIP_Cebwrpg_2/erfbyir/znva/", "rot13") + "fcpe.pt", "-P", os.path.join("assets", "model", "predictors")], check=True)
if method == "rmvpe": download_rmvpe()
elif method == "fcpe": download_fcpe()
elif "hybrid" in method:
methods_str = re.search("hybrid\[(.+)\]", method)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
for method in methods:
if method == "rmvpe": download_rmvpe()
elif method == "fcpe": download_fcpe()
def check_hubert(hubert):
if hubert == "contentvec_base" or hubert == "hubert_base" or hubert == "japanese_hubert_base" or hubert == "korean_hubert_base" or hubert == "chinese_hubert_base":
model_path = os.path.join(now_dir, "assets", "model", "embedders", hubert + '.pt')
if not os.path.exists(model_path): subprocess.run(["wget", "-q", "--show-progress", "--no-check-certificate", codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Pbyno_EIP_Cebwrpg_2/erfbyir/znva/", "rot13") + f"{hubert}.pt", "-P", os.path.join("assets", "model", "embedders")], check=True)
def load_audio_infer(file, sample_rate):
try:
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))
audio, sr = sf.read(file)
if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
if sr != sample_rate: audio = librosa.resample(audio, orig_sr=sr, target_sr=sample_rate)
except Exception as e:
raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
return audio.flatten()
def process_audio(file_path, output_path):
try:
song = AudioSegment.from_file(file_path)
nonsilent_parts = silence.detect_nonsilent(song, min_silence_len=750, silence_thresh=-70)
cut_files = []
time_stamps = []
min_chunk_duration = 30
for i, (start_i, end_i) in enumerate(nonsilent_parts):
chunk = song[start_i:end_i]
if len(chunk) >= min_chunk_duration:
chunk_file_path = os.path.join(output_path, f"chunk{i}.wav")
if os.path.exists(chunk_file_path): os.remove(chunk_file_path)
chunk.export(chunk_file_path, format="wav")
cut_files.append(chunk_file_path)
time_stamps.append((start_i, end_i))
else: logger.debug(translations["skip_file"].format(i=i, chunk=len(chunk)))
logger.info(f"{translations['split_total']}: {len(cut_files)}")
return cut_files, time_stamps
except Exception as e:
raise RuntimeError(f"{translations['process_audio_error']}: {e}")
def merge_audio(files_list, time_stamps, original_file_path, output_path, format):
try:
def extract_number(filename):
match = re.search(r'_(\d+)', filename)
return int(match.group(1)) if match else 0
files_list = sorted(files_list, key=extract_number)
total_duration = len(AudioSegment.from_file(original_file_path))
combined = AudioSegment.empty()
current_position = 0
for file, (start_i, end_i) in zip(files_list, time_stamps):
if start_i > current_position:
silence_duration = start_i - current_position
combined += AudioSegment.silent(duration=silence_duration)
combined += AudioSegment.from_file(file)
current_position = end_i
if current_position < total_duration: combined += AudioSegment.silent(duration=total_duration - current_position)
combined.export(output_path, format=format)
return output_path
except Exception as e:
raise RuntimeError(f"{translations['merge_error']}: {e}")
def run_batch_convert(params):
cvt = VoiceConverter()
path = params["path"]
audio_temp = params["audio_temp"]
export_format = params["export_format"]
cut_files = params["cut_files"]
pitch = params["pitch"]
filter_radius = params["filter_radius"]
index_rate = params["index_rate"]
volume_envelope = params["volume_envelope"]
protect = params["protect"]
hop_length = params["hop_length"]
f0_method = params["f0_method"]
pth_path = params["pth_path"]
index_path = params["index_path"]
f0_autotune = params["f0_autotune"]
f0_autotune_strength = params["f0_autotune_strength"]
clean_audio = params["clean_audio"]
clean_strength = params["clean_strength"]
upscale_audio = params["upscale_audio"]
embedder_model = params["embedder_model"]
resample_sr = params["resample_sr"]
segment_output_path = os.path.join(audio_temp, f"output_{cut_files.index(path)}.{export_format}")
if os.path.exists(segment_output_path): os.remove(segment_output_path)
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=path, audio_output_path=segment_output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, upscale_audio=upscale_audio, embedder_model=embedder_model, resample_sr=resample_sr)
os.remove(path)
if os.path.exists(segment_output_path): return segment_output_path
else:
logger.warning(f"{translations['not_found_convert_file']}: {segment_output_path}")
sys.exit(1)
def run_convert_script(pitch, filter_radius, index_rate, volume_envelope, protect, hop_length, f0_method, input_path, output_path, pth_path, index_path, f0_autotune, f0_autotune_strength, clean_audio, clean_strength, export_format, upscale_audio, embedder_model, resample_sr, batch_process, batch_size, split_audio):
cvt = VoiceConverter()
start_time = time.time()
if not pth_path or not os.path.exists(pth_path) or os.path.isdir(pth_path) or not pth_path.endswith(".pth"):
logger.warning(translations["provide_file"].format(filename=translations["model"]))
sys.exit(1)
if not index_path or not os.path.exists(index_path) or os.path.isdir(index_path) or not index_path.endswith(".index"):
logger.warning(translations["provide_file"].format(filename=translations["index"]))
sys.exit(1)
output_dir = os.path.dirname(output_path)
output_dir = output_path if not output_dir else output_dir
if output_dir is None: output_dir = "audios"
if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True)
audio_temp = os.path.join("audios_temp")
if not os.path.exists(audio_temp) and split_audio: os.makedirs(audio_temp, exist_ok=True)
processed_segments = []
if os.path.isdir(input_path):
try:
logger.info(translations["convert_batch"])
audio_files = [f for f in os.listdir(input_path) if f.endswith(("wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3"))]
if not audio_files:
logger.warning(translations["not_found_audio"])
sys.exit(1)
logger.info(translations["found_audio"].format(audio_files=len(audio_files)))
for audio in audio_files:
audio_path = os.path.join(input_path, audio)
output_audio = os.path.join(input_path, os.path.splitext(audio)[0] + f"_output.{export_format}")
if split_audio:
try:
cut_files, time_stamps = process_audio(audio_path, audio_temp)
num_threads = min(batch_size, len(cut_files))
params_list = [
{
"path": path,
"audio_temp": audio_temp,
"export_format": export_format,
"cut_files": cut_files,
"pitch": pitch,
"filter_radius": filter_radius,
"index_rate": index_rate,
"volume_envelope": volume_envelope,
"protect": protect,
"hop_length": hop_length,
"f0_method": f0_method,
"pth_path": pth_path,
"index_path": index_path,
"f0_autotune": f0_autotune,
"f0_autotune_strength": f0_autotune_strength,
"clean_audio": clean_audio,
"clean_strength": clean_strength,
"upscale_audio": upscale_audio,
"embedder_model": embedder_model,
"resample_sr": resample_sr
}
for path in cut_files
]
if batch_process:
with mp.Pool(processes=num_threads) as pool:
with tqdm(total=len(params_list), desc=translations["convert_audio"]) as pbar:
for results in pool.imap_unordered(run_batch_convert, params_list):
processed_segments.append(results)
pbar.update(1)
else:
for params in tqdm(params_list, desc=translations["convert_audio"]):
run_batch_convert(params)
merge_audio(processed_segments, time_stamps, audio_path, output_audio, export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
logger.info(f"{translations['convert_audio']} '{audio_path}'...")
if os.path.exists(output_audio): os.remove(output_audio)
with tqdm(total=1, desc=translations["convert_audio"]) as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=audio_path, audio_output_path=output_audio, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, upscale_audio=upscale_audio, embedder_model=embedder_model, resample_sr=resample_sr)
pbar.update(1)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
elapsed_time = time.time() - start_time
logger.info(translations["convert_batch_success"].format(elapsed_time=f"{elapsed_time:.2f}", output_path=output_path.replace('.wav', f'.{export_format}')))
except Exception as e:
logger.error(translations["error_convert_batch_2"].format(e=e))
else:
logger.info(f"{translations['convert_audio']} '{input_path}'...")
if not os.path.exists(input_path):
logger.warning(translations["not_found_audio"])
sys.exit(1)
if os.path.isdir(output_path): output_path = os.path.join(output_path, f"output.{export_format}")
if os.path.exists(output_path): os.remove(output_path)
if split_audio:
try:
cut_files, time_stamps = process_audio(input_path, audio_temp)
num_threads = min(batch_size, len(cut_files))
params_list = [
{
"path": path,
"audio_temp": audio_temp,
"export_format": export_format,
"cut_files": cut_files,
"pitch": pitch,
"filter_radius": filter_radius,
"index_rate": index_rate,
"volume_envelope": volume_envelope,
"protect": protect,
"hop_length": hop_length,
"f0_method": f0_method,
"pth_path": pth_path,
"index_path": index_path,
"f0_autotune": f0_autotune,
"f0_autotune_strength": f0_autotune_strength,
"clean_audio": clean_audio,
"clean_strength": clean_strength,
"upscale_audio": upscale_audio,
"embedder_model": embedder_model,
"resample_sr": resample_sr
}
for path in cut_files
]
if batch_process:
with mp.Pool(processes=num_threads) as pool:
with tqdm(total=len(params_list), desc=translations["convert_audio"]) as pbar:
for results in pool.imap_unordered(run_batch_convert, params_list):
processed_segments.append(results)
pbar.update(1)
else:
for params in tqdm(params_list, desc=translations["convert_audio"]):
run_batch_convert(params)
merge_audio(processed_segments, time_stamps, input_path, output_path.replace(".wav", f".{export_format}"), export_format)
except Exception as e:
logger.error(translations["error_convert_batch"].format(e=e))
finally:
if os.path.exists(audio_temp): shutil.rmtree(audio_temp, ignore_errors=True)
else:
try:
with tqdm(total=1, desc=translations["convert_audio"]) as pbar:
cvt.convert_audio(pitch=pitch, filter_radius=filter_radius, index_rate=index_rate, volume_envelope=volume_envelope, protect=protect, hop_length=hop_length, f0_method=f0_method, audio_input_path=input_path, audio_output_path=output_path, model_path=pth_path, index_path=index_path, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength, clean_audio=clean_audio, clean_strength=clean_strength, export_format=export_format, upscale_audio=upscale_audio, embedder_model=embedder_model, resample_sr=resample_sr)
pbar.update(1)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
elapsed_time = time.time() - start_time
logger.info(translations["convert_audio_success"].format(input_path=input_path, elapsed_time=f"{elapsed_time:.2f}", output_path=output_path.replace('.wav', f'.{export_format}')))
def change_rms(source_audio: np.ndarray, source_rate: int, target_audio: np.ndarray, target_rate: int, rate: float) -> np.ndarray:
rms1 = librosa.feature.rms(
y=source_audio,
frame_length=source_rate // 2 * 2,
hop_length=source_rate // 2,
)
rms2 = librosa.feature.rms(
y=target_audio,
frame_length=target_rate // 2 * 2,
hop_length=target_rate // 2,
)
rms1 = F.interpolate(
torch.from_numpy(rms1).float().unsqueeze(0),
size=target_audio.shape[0],
mode="linear",
).squeeze()
rms2 = F.interpolate(
torch.from_numpy(rms2).float().unsqueeze(0),
size=target_audio.shape[0],
mode="linear",
).squeeze()
rms2 = torch.maximum(rms2, torch.zeros_like(rms2) + 1e-6)
adjusted_audio = (target_audio * (torch.pow(rms1, 1 - rate) * torch.pow(rms2, rate - 1)).numpy())
return adjusted_audio
class Autotune:
def __init__(self, ref_freqs):
self.ref_freqs = ref_freqs
self.note_dict = self.ref_freqs
def autotune_f0(self, f0, f0_autotune_strength):
autotuned_f0 = np.zeros_like(f0)
for i, freq in enumerate(f0):
closest_note = min(self.note_dict, key=lambda x: abs(x - freq))
autotuned_f0[i] = freq + (closest_note - freq) * f0_autotune_strength
return autotuned_f0
class VC:
def __init__(self, tgt_sr, config):
self.x_pad = config.x_pad
self.x_query = config.x_query
self.x_center = config.x_center
self.x_max = config.x_max
self.is_half = config.is_half
self.sample_rate = 16000
self.window = 160
self.t_pad = self.sample_rate * self.x_pad
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sample_rate * self.x_query
self.t_center = self.sample_rate * self.x_center
self.t_max = self.sample_rate * self.x_max
self.time_step = self.window / self.sample_rate * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = config.device
self.ref_freqs = [
49.00,
51.91,
55.00,
58.27,
61.74,
65.41,
69.30,
73.42,
77.78,
82.41,
87.31,
92.50,
98.00,
103.83,
110.00,
116.54,
123.47,
130.81,
138.59,
146.83,
155.56,
164.81,
174.61,
185.00,
196.00,
207.65,
220.00,
233.08,
246.94,
261.63,
277.18,
293.66,
311.13,
329.63,
349.23,
369.99,
392.00,
415.30,
440.00,
466.16,
493.88,
523.25,
554.37,
587.33,
622.25,
659.25,
698.46,
739.99,
783.99,
830.61,
880.00,
932.33,
987.77,
1046.50
]
self.autotune = Autotune(self.ref_freqs)
self.note_dict = self.autotune.note_dict
def get_f0_crepe(self, x, f0_min, f0_max, p_len, hop_length, model="full"):
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
audio = torch.from_numpy(x).to(self.device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
pitch: Tensor = torchcrepe.predict(audio, self.sample_rate, hop_length, f0_min, f0_max, model, batch_size=hop_length * 2, device=self.device, pad=True)
p_len = p_len or x.shape[0] // hop_length
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0
def get_f0_hybrid(self, methods_str, x, f0_min, f0_max, p_len, hop_length, filter_radius):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str: methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack = []
logger.debug(translations["hybrid_methods"].format(methods=methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
if method == "pm":
f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
elif method == 'dio':
f0, t = pyworld.dio(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sample_rate)
f0 = signal.medfilt(f0, 3)
elif method == "crepe-tiny":
f0 = self.get_f0_crepe(x, self.f0_min, self.f0_max, p_len, int(hop_length), "tiny")
elif method == "crepe":
f0 = self.get_f0_crepe(x, f0_min, f0_max, p_len, int(hop_length))
elif method == "fcpe":
self.model_fcpe = FCPE(os.path.join("assets", "model", "predictors", "fcpe.pt"), hop_length=int(hop_length), f0_min=int(f0_min), f0_max=int(f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03)
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
del self.model_fcpe
gc.collect()
elif method == "rmvpe":
f0 = RMVPE(os.path.join("assets", "model", "predictors", "rmvpe.pt"), is_half=self.is_half, device=self.device).infer_from_audio(x, thred=0.03)
f0 = f0[1:]
elif method == "harvest":
f0, t = pyworld.harvest(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sample_rate)
if filter_radius > 2: f0 = signal.medfilt(f0, 3)
else: raise ValueError(translations["method_not_valid"])
f0_computation_stack.append(f0)
resampled_stack = []
for f0 in f0_computation_stack:
resampled_f0 = np.interp(np.linspace(0, len(f0), p_len), np.arange(len(f0)), f0)
resampled_stack.append(resampled_f0)
f0_median_hybrid = resampled_stack[0] if len(resampled_stack) == 1 else np.nanmedian(np.vstack(resampled_stack), axis=0)
return f0_median_hybrid
def get_f0(self, input_audio_path, x, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength):
global input_audio_path2wav
if f0_method == "pm":
f0 = (parselmouth.Sound(x, self.sample_rate).to_pitch_ac(time_step=self.window / self.sample_rate * 1000 / 1000, voicing_threshold=0.6, pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array["frequency"])
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0: f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
elif f0_method == "dio":
f0, t = pyworld.dio(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sample_rate)
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe-tiny":
f0 = self.get_f0_crepe(x, self.f0_min, self.f0_max, p_len, int(hop_length), "tiny")
elif f0_method == "crepe":
f0 = self.get_f0_crepe(x, self.f0_min, self.f0_max, p_len, int(hop_length))
elif f0_method == "fcpe":
self.model_fcpe = FCPE(os.path.join("assets", "model", "predictors", "fcpe.pt"), hop_length=int(hop_length), f0_min=int(self.f0_min), f0_max=int(self.f0_max), dtype=torch.float32, device=self.device, sample_rate=self.sample_rate, threshold=0.03)
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
del self.model_fcpe
gc.collect()
elif f0_method == "rmvpe":
f0 = RMVPE(os.path.join("assets", "model", "predictors", "rmvpe.pt"), is_half=self.is_half, device=self.device).infer_from_audio(x, thred=0.03)
elif f0_method == "harvest":
f0, t = pyworld.harvest(x.astype(np.double), fs=self.sample_rate, f0_ceil=self.f0_max, f0_floor=self.f0_min, frame_period=10)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sample_rate)
if filter_radius > 2: f0 = signal.medfilt(f0, 3)
elif "hybrid" in f0_method:
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = self.get_f0_hybrid(f0_method, x, self.f0_min, self.f0_max, p_len, hop_length, filter_radius)
else: raise ValueError(translations["method_not_valid"])
if f0_autotune: f0 = Autotune.autotune_f0(self, f0, f0_autotune_strength)
f0 *= pow(2, pitch / 12)
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int32)
return f0_coarse, f0bak
def voice_conversion(self, model, net_g, sid, audio0, pitch, pitchf, index, big_npy, index_rate, version, protect):
pitch_guidance = pitch != None and pitchf != None
feats = (torch.from_numpy(audio0).half() if self.is_half else torch.from_numpy(audio0).float())
if feats.dim() == 2: feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
}
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5 and pitch_guidance: feats0 = feats.clone()
if (not isinstance(index, type(None)) and not isinstance(big_npy, type(None)) and index_rate != 0):
npy = feats[0].cpu().numpy()
if self.is_half: npy = npy.astype("float32")
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half: npy = npy.astype("float16")
feats = (torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate + (1 - index_rate) * feats)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch_guidance: feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch_guidance:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch_guidance:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
audio1 = ((net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]).data.cpu().float().numpy()) if pitch_guidance else ((net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy())
del feats, p_len, padding_mask
if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio1
def pipeline(self, model, net_g, sid, audio, input_audio_path, pitch, f0_method, file_index, index_rate, pitch_guidance, filter_radius, tgt_sr, resample_sr, volume_envelope, version, protect, hop_length, f0_autotune, f0_autotune_strength):
if file_index != "" and os.path.exists(file_index) and index_rate != 0:
try:
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as e:
logger.error(translations["read_faiss_index_error"].format(e=e))
index = big_npy = None
else: index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query : t + self.t_query]) == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min())[0][0])
s = 0
audio_opt = []
t = None
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
if pitch_guidance:
pitch, pitchf = self.get_f0(input_audio_path, audio_pad, p_len, pitch, f0_method, filter_radius, hop_length, f0_autotune, f0_autotune_strength)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if self.device == "mps": pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
for t in opt_ts:
t = t // self.window * self.window
if pitch_guidance: audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], pitch[:, s // self.window : (t + self.t_pad2) // self.window], pitchf[:, s // self.window : (t + self.t_pad2) // self.window], index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
else: audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[s : t + self.t_pad2 + self.window], None, None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
s = t
if pitch_guidance: audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], pitch[:, t // self.window :] if t is not None else pitch, pitchf[:, t // self.window :] if t is not None else pitchf, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
else: audio_opt.append(self.voice_conversion(model, net_g, sid, audio_pad[t:], None, None, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
audio_opt = np.concatenate(audio_opt)
if volume_envelope != 1: audio_opt = change_rms(audio, self.sample_rate, audio_opt, tgt_sr, volume_envelope)
if resample_sr >= self.sample_rate and tgt_sr != resample_sr: audio_opt = librosa.resample(audio_opt, orig_sr=tgt_sr, target_sr=resample_sr)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1: max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
if pitch_guidance: del pitch, pitchf
del sid
if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio_opt
class VoiceConverter:
def __init__(self):
self.config = Config()
self.hubert_model = (None)
self.tgt_sr = None
self.net_g = None
self.vc = None
self.cpt = None
self.version = None
self.n_spk = None
self.use_f0 = None
self.loaded_model = None
def load_hubert(self, embedder_model):
try:
models, _, _ = checkpoint_utils.load_model_ensemble_and_task([os.path.join(now_dir, "assets", "model", "embedders", embedder_model + '.pt')], suffix="")
except Exception as e:
raise ImportError(translations["read_model_error"].format(e=e))
self.hubert_model = models[0].to(self.config.device)
self.hubert_model = (self.hubert_model.half() if self.config.is_half else self.hubert_model.float())
self.hubert_model.eval()
@staticmethod
def remove_audio_noise(input_audio_path, reduction_strength=0.7):
try:
rate, data = wavfile.read(input_audio_path)
reduced_noise = nr.reduce_noise(y=data, sr=rate, prop_decrease=reduction_strength)
return reduced_noise
except Exception as e:
logger.error(translations["denoise_error"].format(e=e))
return None
@staticmethod
def convert_audio_format(input_path, output_path, output_format):
try:
if output_format != "wav":
logger.debug(translations["change_format"].format(output_format=output_format))
audio, sample_rate = sf.read(input_path)
common_sample_rates = [
8000,
11025,
12000,
16000,
22050,
24000,
32000,
44100,
48000
]
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=target_sr)
sf.write(output_path, audio, target_sr, format=output_format)
return output_path
except Exception as e:
raise RuntimeError(translations["change_format_error"].format(e=e))
def convert_audio(self, audio_input_path, audio_output_path, model_path, index_path, embedder_model, pitch, f0_method, index_rate, volume_envelope, protect, hop_length, f0_autotune, f0_autotune_strength, filter_radius, clean_audio, clean_strength, export_format, upscale_audio, resample_sr = 0, sid = 0):
self.get_vc(model_path, sid)
try:
if upscale_audio: upscale(audio_input_path, audio_input_path)
audio = load_audio_infer(audio_input_path, 16000)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1: audio /= audio_max
if not self.hubert_model:
if not os.path.exists(os.path.join(now_dir, "assets", "model", "embedders", embedder_model + '.pt')): raise FileNotFoundError(f"Không tìm thấy mô hình: {embedder_model}")
self.load_hubert(embedder_model)
if self.tgt_sr != resample_sr >= 16000: self.tgt_sr = resample_sr
file_index = (index_path.strip().strip('"').strip("\n").strip('"').strip().replace("trained", "added"))
audio_opt = self.vc.pipeline(model=self.hubert_model, net_g=self.net_g, sid=sid, audio=audio, input_audio_path=audio_input_path, pitch=pitch, f0_method=f0_method, file_index=file_index, index_rate=index_rate, pitch_guidance=self.use_f0, filter_radius=filter_radius, tgt_sr=self.tgt_sr, resample_sr=resample_sr, volume_envelope=volume_envelope, version=self.version, protect=protect, hop_length=hop_length, f0_autotune=f0_autotune, f0_autotune_strength=f0_autotune_strength)
if audio_output_path: sf.write(audio_output_path, audio_opt, self.tgt_sr, format="wav")
if clean_audio:
cleaned_audio = self.remove_audio_noise(audio_output_path, clean_strength)
if cleaned_audio is not None: sf.write(audio_output_path, cleaned_audio, self.tgt_sr, format="wav")
output_path_format = audio_output_path.replace(".wav", f".{export_format}")
audio_output_path = self.convert_audio_format(audio_output_path, output_path_format, export_format)
except Exception as e:
logger.error(translations["error_convert"].format(e=e))
logger.error(traceback.format_exc())
def get_vc(self, weight_root, sid):
if sid == "" or sid == []:
self.cleanup_model()
if torch.cuda.is_available(): torch.cuda.empty_cache()
if not self.loaded_model or self.loaded_model != weight_root:
self.load_model(weight_root)
if self.cpt is not None:
self.setup_network()
self.setup_vc_instance()
self.loaded_model = weight_root
def cleanup_model(self):
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available(): torch.cuda.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available(): torch.cuda.empty_cache()
self.cpt = None
def load_model(self, weight_root):
self.cpt = (torch.load(weight_root, map_location="cpu") if os.path.isfile(weight_root) else None)
def setup_network(self):
if self.cpt is not None:
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
self.net_g = Synthesizer(*self.cpt["config"], use_f0=self.use_f0, text_enc_hidden_dim=self.text_enc_hidden_dim, is_half=self.config.is_half)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
self.net_g = (self.net_g.half() if self.config.is_half else self.net_g.float())
def setup_vc_instance(self):
if self.cpt is not None:
self.vc = VC(self.tgt_sr, self.config)
self.n_spk = self.cpt["config"][-3]
if __name__ == "__main__":
mp.set_start_method("spawn", force=True)
main() |