Spaces:
Sleeping
Sleeping
Debug
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
-
|
7 |
fine_tuned_model = "andyqin18/test-finetuned"
|
8 |
sample_text_num = 10
|
9 |
|
@@ -34,27 +34,24 @@ model_descrip = {
|
|
34 |
Labels: POS; NEU; NEG"
|
35 |
}
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
41 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
42 |
|
|
|
43 |
# Display model information
|
44 |
st.write("### Model Description:")
|
45 |
st.write(model_descrip[user_model])
|
46 |
|
47 |
|
48 |
-
|
49 |
-
|
50 |
# Perform analysis and print result
|
51 |
if st.button("Analyze"):
|
52 |
if not user_input:
|
53 |
st.write("Please enter a text.")
|
54 |
else:
|
55 |
with st.spinner("Hang on.... Analyzing..."):
|
|
|
56 |
if user_model == fine_tuned_model:
|
57 |
-
result = analyze(user_model, user_input, top_k=2)
|
58 |
result_dict = {
|
59 |
"Text": [user_input],
|
60 |
"Highest Toxicity Class": [result[0][0]['label']],
|
@@ -63,29 +60,32 @@ if st.button("Analyze"):
|
|
63 |
"Second Highest Score": [result[0][1]['score']]
|
64 |
}
|
65 |
st.dataframe(pd.DataFrame(result_dict))
|
66 |
-
if st.button("Click to generate ten sample analysis"):
|
67 |
-
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
68 |
-
test_texts = df["comment_text"].values
|
69 |
-
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
st.dataframe(pd.DataFrame(init_table_dict))
|
87 |
else:
|
88 |
-
st.write("(
|
89 |
|
90 |
|
91 |
else:
|
|
|
3 |
import numpy as np
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
+
# Define global variables
|
7 |
fine_tuned_model = "andyqin18/test-finetuned"
|
8 |
sample_text_num = 10
|
9 |
|
|
|
34 |
Labels: POS; NEU; NEG"
|
35 |
}
|
36 |
|
|
|
|
|
|
|
37 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
38 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
39 |
|
40 |
+
|
41 |
# Display model information
|
42 |
st.write("### Model Description:")
|
43 |
st.write(model_descrip[user_model])
|
44 |
|
45 |
|
|
|
|
|
46 |
# Perform analysis and print result
|
47 |
if st.button("Analyze"):
|
48 |
if not user_input:
|
49 |
st.write("Please enter a text.")
|
50 |
else:
|
51 |
with st.spinner("Hang on.... Analyzing..."):
|
52 |
+
# If fine-tuned
|
53 |
if user_model == fine_tuned_model:
|
54 |
+
result = analyze(user_model, user_input, top_k=2) # Top 2 labels with highest score
|
55 |
result_dict = {
|
56 |
"Text": [user_input],
|
57 |
"Highest Toxicity Class": [result[0][0]['label']],
|
|
|
60 |
"Second Highest Score": [result[0][1]['score']]
|
61 |
}
|
62 |
st.dataframe(pd.DataFrame(result_dict))
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# 10 Sample Table
|
65 |
+
if st.button("Click to generate ten sample analysis"):
|
66 |
+
with st.spinner("Hang on.... Analyzing..."):
|
67 |
+
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
68 |
+
test_texts = df["comment_text"].values
|
69 |
+
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
70 |
+
|
71 |
+
init_table_dict = {
|
72 |
+
"Text": [],
|
73 |
+
"Highest Toxicity Class": [],
|
74 |
+
"Highest Score": [],
|
75 |
+
"Second Highest Toxicity Class": [],
|
76 |
+
"Second Highest Score": []
|
77 |
+
}
|
78 |
+
|
79 |
+
for text in sample_texts:
|
80 |
+
result = analyze(fine_tuned_model, text[:50], top_k=2)
|
81 |
+
init_table_dict["Text"].append(text[:50])
|
82 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
83 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
84 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
85 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
86 |
st.dataframe(pd.DataFrame(init_table_dict))
|
87 |
else:
|
88 |
+
st.write("( ─ ‿ ‿ ─ )")
|
89 |
|
90 |
|
91 |
else:
|