Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
st.title("Sentiment Analysis App - beta") | |
st.header("This app is to analyze the sentiments behind a text. Currently it uses \ | |
pre-trained models without fine-tuning.") | |
user_input = st.text_input("Enter your text:", value="Missing Sophie.Z...") | |
user_model = st.selectbox("Please select a model:", | |
("distilbert-base-uncased-finetuned-sst-2-english", | |
"cardiffnlp/twitter-roberta-base-sentiment", | |
"finiteautomata/bertweet-base-sentiment-analysis")) | |
def analyze(model_name, text): | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
return classifier(text) | |
if st.button("Analyze"): | |
if not user_input: | |
st.write("Please enter a text.") | |
else: | |
with st.spinner("Hang on.... Analyzing..."): | |
st.write(analyze(user_model, user_input)) | |
else: | |
st.write("Go on! Try the app!") |