|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
model_name = "distilbert-base-uncased-finetuned-sst-2-english" |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
print(classifier.__class__) |
|
res = classifier(["I am very happy now.", "Not happy now."]) |
|
|
|
for result in res: |
|
print(result) |
|
|
|
|
|
tokens = tokenizer.tokenize("I am very happy now.") |
|
|
|
|
|
token_ids = tokenizer.convert_tokens_to_ids(tokens) |
|
|
|
|
|
input_ids = tokenizer("I am very happy now.") |
|
|
|
print(f'Tokens:{tokens}') |
|
print(f'TokenIDs:{token_ids}') |
|
print(f'InputIDs:{input_ids}') |
|
|
|
X_train = ["We are very happy to show you the Transformers library.", |
|
"Hope you don't hate it"] |
|
|
|
batch = tokenizer(X_train, padding=True, truncation=True, max_length=512, return_tensors="pt") |
|
|
|
|
|
|