File size: 5,830 Bytes
311dc3a
 
 
 
167137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311dc3a
 
167137b
 
 
 
 
311dc3a
 
 
167137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311dc3a
167137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c49dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311dc3a
167137b
 
 
 
 
 
 
 
 
 
 
 
 
311dc3a
167137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311dc3a
167137b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import pickle

import pandas as pd
import gradio as gr
import plotly.express as px

from utils import (
    KEY_TO_CATEGORY_NAME,
    PROPRIETARY_LICENSES,
    download_latest_data_from_space,
)

# with gr.NO_RELOAD:
###################
### Load Data
###################

# gather ELO data
latest_elo_file_local = download_latest_data_from_space(
    repo_id="lmsys/chatbot-arena-leaderboard", file_type="pkl"
)

with open(latest_elo_file_local, "rb") as fin:
    elo_results = pickle.load(fin)

arena_dfs = {}
for k in KEY_TO_CATEGORY_NAME.keys():
    if k not in elo_results:
        continue
    arena_dfs[KEY_TO_CATEGORY_NAME[k]] = elo_results[k]["leaderboard_table_df"]

# gather open llm leaderboard data
latest_leaderboard_file_local = download_latest_data_from_space(
    repo_id="lmsys/chatbot-arena-leaderboard", file_type="csv"
)
leaderboard_df = pd.read_csv(latest_leaderboard_file_local)

###################
### Prepare Data
###################

# merge leaderboard data with ELO data
merged_dfs = {}
for k, v in arena_dfs.items():
    merged_dfs[k] = (
        pd.merge(arena_dfs[k], leaderboard_df, left_index=True, right_on="key")
        .sort_values("rating", ascending=False)
        .reset_index(drop=True)
    )

# add release dates into the merged data
release_date_mapping = pd.read_json("release_date_mapping.json", orient="records")
for k, v in merged_dfs.items():
    merged_dfs[k] = pd.merge(
        merged_dfs[k], release_date_mapping[["key", "Release Date"]], on="key"
    )

df = merged_dfs["Overall"]
df["License"] = df["License"].apply(
    lambda x: "Proprietary LLM" if x in PROPRIETARY_LICENSES else "Open LLM"
)
df["Release Date"] = pd.to_datetime(df["Release Date"])
df["Month-Year"] = df["Release Date"].dt.to_period("M")
df["rating"] = df["rating"].round()


###################
### Plot Data
###################

date_updated = elo_results["full"]["last_updated_datetime"].split(" ")[0]
min_elo_score = df["rating"].min().round()
max_elo_score = df["rating"].max().round()
upper_models_per_month = int(
    df.groupby(["Month-Year", "License"])["rating"].apply(lambda x: x.count()).max()
)


def build_plot(min_score, max_models_per_month, toggle_annotations):

    filtered_df = df[(df["rating"] >= min_score)]
    filtered_df = (
        filtered_df.groupby(["Month-Year", "License"])
        .apply(lambda x: x.nlargest(max_models_per_month, "rating"))
        .reset_index(drop=True)
    )

    fig = px.scatter(
        filtered_df,
        x="Release Date",
        y="rating",
        color="License",
        hover_name="Model",
        hover_data=["Organization", "License"],
        trendline="ols",
        title=f"Proprietary vs Open LLMs (LMSYS Arena ELO as of {date_updated})",
        labels={"rating": "Arena ELO", "Release Date": "Release Date"},
        height=700,
        template="seaborn",
    )

    fig.update_traces(marker=dict(size=10, opacity=0.6))

    if toggle_annotations:
        # get the points to annotate (only the highest rated model per month per license)
        idx_to_annotate = filtered_df.groupby(["Month-Year", "License"])[
            "rating"
        ].idxmax()
        points_to_annotate_df = filtered_df.loc[idx_to_annotate]

        for i, row in points_to_annotate_df.iterrows():
            fig.add_annotation(
                x=row["Release Date"],
                y=row["rating"],
                text=row["Model"],
                showarrow=True,
                arrowhead=0,
            )

    return fig


with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue=gr.themes.colors.sky,
        secondary_hue=gr.themes.colors.green,
        font=[
            gr.themes.GoogleFont("Open Sans"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        ],
    )
) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: auto;">
            <h1 style="font-weight: 900; margin-top: 5px;">πŸ”¬ Progress Tracker: Proprietary vs Open LLMs
            </h1>
            <p style="text-align: left; margin-top: 10px; margin-bottom: 10px; line-height: 20px;">
            This app visualizes the progress of proprietary and open-source LLMs in the LMSYS Arena ELO leaderboard. The idea is inspired by <a href="https://www.linkedin.com/posts/maxime-labonne_arena-elo-graph-updated-with-new-models-activity-7187062633735368705-u2jB?utm_source=share&utm_medium=member_desktop">this great work</a> from <a href="https://huggingface.co/mlabonne/">Maxime Labonne</a>.
            </p>
        </div>
        """
    )
    with gr.Row():
        min_score = gr.Slider(
            minimum=min_elo_score,
            maximum=max_elo_score,
            value=800,
            step=50,
            label="Minimum ELO Score",
        )
        max_models_per_month = gr.Slider(
            value=upper_models_per_month,
            minimum=1,
            maximum=upper_models_per_month,
            step=1,
            label="Max Models per Month (per License)",
        )
        toggle_annotations = gr.Radio(
            choices=[True, False], label="Overlay Best Model Name", value=False
        )

    # Show plot
    plot = gr.Plot()
    demo.load(
        fn=build_plot,
        inputs=[min_score, max_models_per_month, toggle_annotations],
        outputs=plot,
    )
    min_score.change(
        fn=build_plot,
        inputs=[min_score, max_models_per_month, toggle_annotations],
        outputs=plot,
    )
    max_models_per_month.change(
        fn=build_plot,
        inputs=[min_score, max_models_per_month, toggle_annotations],
        outputs=plot,
    )
    toggle_annotations.change(
        fn=build_plot,
        inputs=[min_score, max_models_per_month, toggle_annotations],
        outputs=plot,
    )

demo.launch()
# if __name__ == "__main__":