Spaces:
Sleeping
Sleeping
Add plotters for bounding boxes
Browse files
app.py
CHANGED
|
@@ -2,7 +2,9 @@ from transformers import pipeline, SamModel, SamProcessor
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import spaces
|
|
|
|
| 5 |
|
|
|
|
| 6 |
checkpoint = "google/owlvit-base-patch16"
|
| 7 |
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
|
| 8 |
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda")
|
|
@@ -10,40 +12,50 @@ sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
|
| 10 |
|
| 11 |
@spaces.GPU
|
| 12 |
def query(image, texts, threshold):
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
image,
|
| 32 |
-
input_boxes=[[[box]]],
|
| 33 |
return_tensors="pt"
|
| 34 |
).to("cuda")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
import gradio as gr
|
| 49 |
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import spaces
|
| 5 |
+
from PIL import Image, ImageDraw
|
| 6 |
|
| 7 |
+
# Load models (unchanged)
|
| 8 |
checkpoint = "google/owlvit-base-patch16"
|
| 9 |
detector = pipeline(model=checkpoint, task="zero-shot-object-detection")
|
| 10 |
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda")
|
|
|
|
| 12 |
|
| 13 |
@spaces.GPU
|
| 14 |
def query(image, texts, threshold):
|
| 15 |
+
texts = texts.split(",")
|
| 16 |
+
|
| 17 |
+
# --- Object Detection (unchanged) ---
|
| 18 |
+
predictions = detector(
|
| 19 |
+
image,
|
| 20 |
+
candidate_labels=texts,
|
| 21 |
+
threshold=threshold
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
result_labels = []
|
| 25 |
+
draw = ImageDraw.Draw(image) # Create a drawing object for the image
|
| 26 |
+
|
| 27 |
+
for pred in predictions:
|
| 28 |
+
box = pred["box"]
|
| 29 |
+
score = pred["score"]
|
| 30 |
+
label = pred["label"]
|
| 31 |
+
|
| 32 |
+
# Round box coordinates for display and SAM input (mostly unchanged)
|
| 33 |
+
box = [round(coord, 2) for coord in list(box.values())]
|
| 34 |
+
|
| 35 |
+
# --- Segmentation (unchanged) ---
|
| 36 |
+
inputs = sam_processor(
|
| 37 |
image,
|
| 38 |
+
input_boxes=[[[box]]], # Note: SAM expects a nested list
|
| 39 |
return_tensors="pt"
|
| 40 |
).to("cuda")
|
| 41 |
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = sam_model(**inputs)
|
| 44 |
+
|
| 45 |
+
mask = sam_processor.image_processor.post_process_masks(
|
| 46 |
+
outputs.pred_masks.cpu(),
|
| 47 |
+
inputs["original_sizes"].cpu(),
|
| 48 |
+
inputs["reshaped_input_sizes"].cpu()
|
| 49 |
+
)[0][0][0].numpy()
|
| 50 |
+
mask = mask[np.newaxis, ...]
|
| 51 |
+
result_labels.append((mask, label))
|
| 52 |
+
|
| 53 |
+
# --- Draw Bounding Box ---
|
| 54 |
+
draw.rectangle(box, outline="red", width=3) # Draw rectangle with a red outline
|
| 55 |
+
draw.text((box[0], box[1] - 10), label, fill="red") # Add label above the box
|
| 56 |
+
|
| 57 |
+
return image, result_labels # Return the modified image
|
| 58 |
+
|
| 59 |
|
| 60 |
import gradio as gr
|
| 61 |
|