Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,912 Bytes
4723159 1ebfb13 4723159 1ebfb13 4723159 1ebfb13 4723159 1ebfb13 4723159 1ebfb13 42b4893 1ebfb13 4723159 42b4893 4723159 eb9c0c4 1ebfb13 4723159 42b4893 1ebfb13 1a89cf0 1ebfb13 d100deb 4723159 1ebfb13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import spaces
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
import torch
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base")
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to(device)
@spaces.GPU
def infer(img, text_queries, score_threshold, model):
if model == "dino":
queries = ""
for query in text_queries:
queries += f"{query}. "
height, width = img.shape[:2]
target_sizes = [(height, width)]
inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device)
with torch.no_grad():
outputs = dino_model(**inputs)
outputs.logits = outputs.logits.cpu()
outputs.pred_boxes = outputs.pred_boxes.cpu()
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids,
box_threshold=score_threshold,
target_sizes=target_sizes)
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
result_labels = []
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score < score_threshold:
continue
if model == "dino":
if label != "":
result_labels.append((box, label))
return result_labels
def query_image(img, text_queries, dino_threshold):
text_queries = text_queries.split(",")
dino_output = infer(img, text_queries, dino_threshold, "dino")
annotations = []
for box, label in dino_output:
annotations.append({"label": label, "coordinates": {"x": box[0], "y": box[1], "width": box[2] - box[0], "height": box[3] - box[1]}})
return (img, {"boxes": annotations})
dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold")
dino_output = gr.AnnotatedImage(label="Grounding DINO Output")
demo = gr.Interface(
query_image,
inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"), dino_threshold],
outputs=[dino_output],
title="OWLv2 ⚔ Grounding DINO",
description="Evaluate state-of-the-art [Grounding DINO](https://huggingface.co/IDEA-Research/grounding-dino-base) zero-shot object detection models. Simply enter an image and the objects you want to find with comma, or try one of the examples. Play with the threshold to filter out low confidence predictions in the model.",
examples=[["./warthog.jpg", "zebra, warthog", 0.16], ["./zebra.jpg", "zebra, lion", 0.16]]
)
demo.launch(debug=True)
|