# img_gen.py #img_gen_modal.py # img_gen.py # img_gen_modal.py import modal import random import io from config.config import prompts, models # Indirect import import os CACHE_DIR = "/model_cache" # Define the Modal image image = ( #modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") modal.Image.debian_slim(python_version="3.9") # Base image .apt_install( "git", ) .pip_install( "diffusers", "transformers", "torch", "accelerate", "gradio>=4.44.1", "safetensors", "pillow", "sentencepiece", "hf_transfer", "huggingface_hub[hf_transfer]", "aria2", # aria2 for ultra-fast parallel downloads f"git+https://github.com/huggingface/transformers.git" ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR } ) ) # Create a Modal app app = modal.App("tools-test-dir", image=image) with image.imports(): import diffusers import os import gradio from datetime import datetime flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume @app.function(volumes={"/data": flux_model_vol}, secrets=[modal.Secret.from_name("huggingface-token")], #gpu="a100-80gb" ) def test_dir(): # OS # Get the current working directory (should be /root) current_directory = os.getcwd() print(f"Current working directory: {current_directory}") # List the contents of the current directory print("Contents of current modal directory:") print(os.listdir(current_directory)) # MODAL print ("MODAL") print ("MODAL ROOT") # List contents of the volume file_entries = flux_model_vol.listdir("/") # Replace "/data" with your volume path # Extract and print only the paths paths = [entry.path for entry in file_entries] print("Paths in volume:") print(paths)