# gradio_interface.py (HuggingFace Spaces) import gradio as gr from config.config import prompts, models, api_token # Direct import from src.img_gen_local import generate_image # Gradio Interface def gradio_interface(): with gr.Blocks(css=""" .output-image img { width: 2500px; /* Force image to fill container width */ object-fit: cover; /* ACTIVATE FOR IMAGE-FIT CONTAINER */ } """) as demo: gr.Markdown("# CtB AI Image Generator - local version") with gr.Row(): # Set default values for dropdowns prompt_dropdown = gr.Dropdown(choices=[p["alias"] for p in prompts], label="Select Prompt", value=prompts[0]["alias"]) team_dropdown = gr.Dropdown(choices=["Red", "Blue"], label="Select Team", value="Red") #model_dropdown = gr.Dropdown(choices=[m["alias"] for m in models], label="Select Model", value=models[0]["alias"]) with gr.Row(): # Add a text box for custom user input (max 200 characters) custom_prompt_input = gr.Textbox(label="Custom Prompt (Optional)", placeholder="Enter additional details (max 200 chars)...", max_lines=1, max_length=200) with gr.Row(): generate_button = gr.Button("Generate Image") with gr.Row(): output_image = gr.Image(elem_classes="output-image", label="Generated Image", show_label=False, scale=1, width="100%") with gr.Row(): status_text = gr.Textbox(label="Status", placeholder="Waiting for input...", interactive=False) # Connect the button to the function generate_button.click( generate_image, inputs=[prompt_dropdown, team_dropdown, custom_prompt_input, #model_dropdown, ], outputs=[output_image, status_text] ) return demo # Create the demo instance demo = gradio_interface() # Only launch if running directly if __name__ == "__main__": demo.queue().launch()