# img_gen.py import sys import os import random from huggingface_hub import InferenceClient, login from datetime import datetime from config.config import models, prompts, api_token # Direct import # def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): # try: # # Generate the image # image_path, message = generate_image(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) # return image_path, message # except Exception as e: # return None, f"An error occurred: {e}" def generate_image( prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): # Find the selected prompt and model try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Determine the enemy color enemy_color = "blue" if team_color.lower() == "red" else "red" # if team.lower() == "red": # winning_team_text = " The winning army is dressed in red armor and banners." # elif team.lower() == "blue": # winning_team_text = " The winning army is dressed in blue armor and banners." # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) print(f"Enemy Color: {enemy_color}") print(f"Team Color: {team_color.lower()}") prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) # Append the custom prompt (if provided) if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Randomize the seed if needed if seed == -1: seed = random.randint(0, 1000000) # HF LOGIN print("Initializing HF TOKEN") print (api_token) # login(token=api_token) # print("model_name:") # print(model_name) # Initialize the InferenceClient try: print("-----INITIALIZING INFERENCE-----") client = InferenceClient(model_name, token=api_token) print("Inference activated") except Exception as e: return None, f"ERROR: Failed to initialize InferenceClient. Details: {e}" #Generate the image try: print("-----GENERATING IMAGE-----") image = client.text_to_image( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, seed=seed ) print("-----IMAGE GENERATED SUCCESSFULLY!-----") except Exception as e: return None, f"ERROR: Failed to generate image. Details: {e}" # Save the image with a timestamped filename print("-----SAVING-----", image) path = "images" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"{path}/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" try: image.save(output_filename) except Exception as e: return None, f"ERROR: Failed to save image. Details: {e}" print("-----DONE!-----") return output_filename, "Image generated successfully!"