# img_gen.py #img_gen_modal.py # img_gen.py # img_gen_modal.py import modal import random import io from config.config import prompts, models # Indirect import import os CACHE_DIR = "/model_cache" # Define the Modal image image = ( #modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") .apt_install( "git", ) .pip_install( "diffusers", "transformers", "torch", "accelerate", "gradio>=4.44.1", "safetensors", "pillow", "sentencepiece", "hf_transfer", "huggingface_hub[hf_transfer]", "aria2", # aria2 for ultra-fast parallel downloads f"git+https://github.com/huggingface/transformers.git" ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR } ) ) # Create a Modal CPU app app = modal.App("img-gen-modal-cpu", image=image) with image.imports(): import diffusers import os import gradio import torch import sentencepiece import torch from huggingface_hub import login from transformers import AutoTokenizer import random from datetime import datetime flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume # CPU FUNCTION @app.function(volumes={"/data": flux_model_vol}, secrets=[modal.Secret.from_name("huggingface-token")], #gpu="a100-80gb", cpu = 2, memory = 160000, timeout=6000 ) # MAIN GENERATE IMAGE FUNCTION def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): #with modal.enable_output(): print("Hello from ctb_modal!") print("Running debug check...") # Debug function to check installed packages def check_dependencies(): packages = [ "diffusers", # For Stable Diffusion "transformers", # For Hugging Face models "torch", # PyTorch "accelerate", # For distributed training/inference "gradio", # For the Gradio interface (updated to latest version) "safetensors", # For safe model loading "pillow", # For image processing "sentencepiece" ] for package in packages: try: import importlib module = importlib.import_module(package) print(f" {package} is installed. Version:") except ImportError: print(f" {package} is NOT installed.") check_dependencies() # Find the selected prompt and model try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Determine the enemy color enemy_color = "blue" if team_color.lower() == "red" else "red" # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) print(f"Enemy Color: {enemy_color}") print(f"Team Color: {team_color.lower()}") prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Append the custom prompt (if provided) if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Randomize the seed if needed if seed == -1: seed = random.randint(0, 1000000) try: from diffusers import FluxPipeline print("Initializing HF TOKEN") hf_token = os.environ["HF_TOKEN"] print(hf_token) print("HF TOKEN:") login(token=hf_token) print("model_name:") print(model_name) # Use absolute path with leading slash local_path = f"/data/{model_name}" # Changed from "data/" to "/data/" print(f"Loading model from local path: {local_path}") # Debug: Check if the directory exists and list its contents if os.path.exists(local_path): print("Directory exists. Contents:") for item in os.listdir(local_path): print(f" - {item}") else: print(f"Directory does not exist: {local_path}") print("Contents of /data:") print(os.listdir("/data")) # INITIALIZING PIPE print("Initializing PIPE2") pipe = FluxPipeline.from_pretrained( local_path, torch_dtype=torch.bfloat16, local_files_only=True ) pipe.enable_model_cpu_offload() # Use official recommended method #pipe = pipe.to("cpu") except Exception as e: print(f"Detailed error: {str(e)}") return None, f"ERROR: Failed to initialize PIPE. Details: {e}" try: print("Sending img gen to pipe") image = pipe( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, # seed=seed ).images[0] print("render done") print(image) except Exception as e: return f"ERROR: Failed to initialize InferenceClient. Details: {e}" try: print("SAVING") # Save the image with a timestamped filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" # Save the image using PIL's save method image.save(output_filename) #print(f"Image saved! File path: {output_filename}") print("Image generated successfully!") except Exception as e: print(f"ERROR: Failed to save image. Details: {e}") # Return the filename and success message return image, "Image generated successfully!"