#img_gen_modal.py import modal import sys import os import random from datetime import datetime import random import io from config.config import models, prompts # Indirect import import gradio as gr volume = modal.Volume.from_name("flux-model-vol") # Reference your volume # Define the Modal image image = ( modal.Image.from_registry( "nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.11" ) .pip_install( "ninja", "packaging", "wheel", "diffusers", # For Stable Diffusion "transformers", # For Hugging Face models "torch>=2.0.1", # PyTorch with a minimum version "accelerate", # For distributed training/inference "gradio", # For the Gradio interface "safetensors", # For safe model loading "pillow", # For image processing "datasets", # For datasets (if needed) ) ) app = modal.App("ctb-ai-img-gen-mondal", image=image) f = modal.Function.lookup("ctb-ai-img-gen-mondal", "generate_image") def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): import gradio as gr try: # Generate the image image_path, message = f.remote(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) return image_path, message except Exception as e: return None, f"An error occurred: {e}" @app.function( volumes={"/volume": volume}, # Mount the volume to /volume #gpu="T4", timeout=600 ) def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): import torch from diffusers import StableDiffusionPipeline # Check if the directory exists import os model_dir = "/volume/FLUX.1-dev" if not os.path.exists(model_dir): raise FileNotFoundError(f"Model directory not found at {model_dir}") # Your image generation code here print(f"Model directory found at {model_dir}! Proceeding with image generation...") # Example: List contents of the directory print("Contents of FLUX.1-dev:") print(os.listdir(model_dir)) # Find the selected prompt and model try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Debug: Check if the model directory exists print(f"Debug: Checking if model directory exists: {model_name}") if not os.path.exists(model_name): return None, f"ERROR: Model directory not found at {model_name}" # Initialize the pipeline using the local model print("Debug: Loading model...") # Determine the enemy color enemy_color = "blue" if team_color.lower() == "red" else "red" # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) print(f"Enemy Color: {enemy_color}") print(f"Team Color: {team_color.lower()}") # Format the prompt prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Append custom prompt if provided if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Randomize seed if needed if seed == -1: seed = random.randint(0, 1000000) # Initialize the pipeline pipe = StableDiffusionPipeline.from_pretrained( model_name, torch_dtype=torch.float16, use_safetensors=True, #variant="fp16" ) pipe.to("cuda") # Connect the button to the function generate_button.click( generate, inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input], outputs=[output_image, status_text] ) # Generate the image try: image = pipe( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=torch.Generator("cuda").manual_seed(seed) ).images[0] # Convert PIL image to bytes img_byte_arr = io.BytesIO() image.save(img_byte_arr, format='PNG') img_byte_arr = img_byte_arr.getvalue() except Exception as e: return None, f"ERROR: Failed to generate image. Details: {e}" # Save the image with a timestamped filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" try: image.save(output_filename) except Exception as e: return img_byte_arr, "Image generated successfully!" except Exception as e: return None, f"ERROR: Failed to generate image. Details: {e}" return output_filename, "Image generated successfully!"