#img_gen_modal.py import modal import random import io from config.config import prompts, models # Indirect import import os import gradio as gr #MOVED FROM IMAGE IMPORT LIST import torch import sentencepiece import torch from huggingface_hub import login from transformers import AutoTokenizer import random from datetime import datetime #import xformers import gradio as gr import numpy as np #import spaces from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images CACHE_DIR = "/model_cache" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # Define the Modal image image = ( modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9").pip_install_from_requirements("requirements.txt") #modal.Image.debian_slim(python_version="3.9") # Base image # .apt_install( # "git", # ) # .pip_install( # "diffusers", # "transformers", # "xformers", # "torch", # "accelerate", # "gradio>=4.44.1", # "safetensors", # "pillow", # "sentencepiece", # "hf_transfer", # "huggingface_hub[hf_transfer]", # "aria2", # aria2 for ultra-fast parallel downloads # f"git+https://github.com/huggingface/transformers.git" # ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR } ) ) # Create a Modal app app = modal.App("live-preview-test", image=image) with image.imports(): import os flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume # GPU FUNCTION @app.function(volumes={"/data": flux_model_vol}, secrets=[modal.Secret.from_name("huggingface-token")], gpu="L40S", timeout = 300 ) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("/data/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("/data/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained("/data/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) torch.cuda.empty_cache() pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): yield img, seed