# img_gen.py #img_gen_modal.py # img_gen.py # img_gen_modal.py import modal import random from datetime import datetime import random import io from config.config import prompts, models # Indirect import import os import torch from huggingface_hub import login from transformers import AutoTokenizer # Define the Modal image image = ( #modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") modal.Image.debian_slim(python_version="3.9") # Base image .apt_install( "git", ) .pip_install( "diffusers", "transformers", "torch", "accelerate", "gradio>=4.44.1", "safetensors", "pillow", "sentencepiece", "hf_transfer", "huggingface_hub[hf_transfer]", "aria2", # aria2 for ultra-fast parallel downloads f"git+https://github.com/huggingface/transformers.git" ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME" } ) ) # Create a Modal app app = modal.App("img-gen-modal", image=image) with image.imports(): import diffusers import os import gradio import torch import sentencepiece #flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume @app.function( secrets=[modal.Secret.from_name("huggingface-token")], #volumes={"/data": flux_model_vol}, gpu="a100-80gb" ) def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=36, width=64, num_inference_steps=2, guidance_scale=2.0, seed=-1): # Find the selected prompt and model try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Determine the enemy color enemy_color = "blue" if team_color.lower() == "red" else "red" # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) print(f"Enemy Color: {enemy_color}") print(f"Team Color: {team_color.lower()}") prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Append the custom prompt (if provided) if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Randomize the seed if needed if seed == -1: seed = random.randint(0, 1000000) try: from diffusers import DiffusionPipeline print("Initializing HF TOKEN") hf_token = os.environ["HF_TOKEN"] print(hf_token) print("HF TOKEN:") login(token=hf_token) print("model_name:") print(model_name) print("Initializing PIPE") pipe = DiffusionPipeline.from_pretrained(model_name) pipe = pipe.to("cuda") except Exception as e: print(f"Detailed error: {str(e)}") return None, f"ERROR: Failed to initialize PIPE. Details: {e}" try: print("Sending img gen to pipe") image = pipe( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, # seed=seed ).images[0] image.save("image.png") except Exception as e: return None, f"ERROR: Failed to generate image. Details: {e}" # Save the image with a timestamped filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" try: # The pipeline typically returns images in a specific format # Usually it's image.images[0] for the first generated image image_output = image.images[0] # Get the actual PIL Image from the output image_output.save(output_filename) # Save using PIL's save method except Exception as e: return None, f"ERROR: Failed to save image. Details: {e}" print(f"Image output type: {type(image)}") print(f"Image output attributes: {dir(image)}") return output_filename, "Image generated successfully!"